Composition and Zero-Shot Transfer with Lattice Structures in Reinforcement Learning

Geraud Nangue Tasse*, Steven James, Benjamin Rosman

University of the Witwatersrand, Johannesburg, South Africa

Journal of Artificial Intelligence Research

Motivation

We want instructable agents (e.g. via language) that can solve tasks beyond Boolean rewards [1,2], and generalise compositionally to new tasks.



 "Serve breakfast with plain toast and ketchup..."

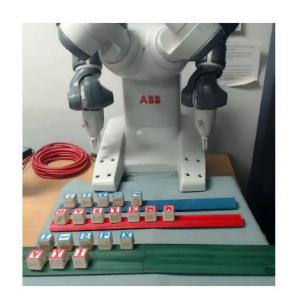
• Neural networks struggle to generalize compositionally³

^[1] G. Nangue Tasse et al., "A Boolean task algebra for reinforcement learning" NeurIPS, 2020.

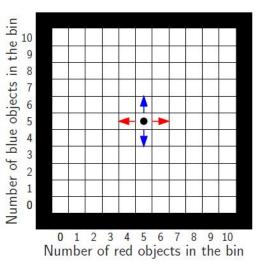
^[2] R. T. Icarte et al., "Using reward machines for high-level task specification and decomposition in reinforcement learning," ICML, 2018

^[3] B. M. Lake et al., "Generalization without systematicity: On the compositional skills of sequence-to-sequence recurrent networks. PMLR 2018.

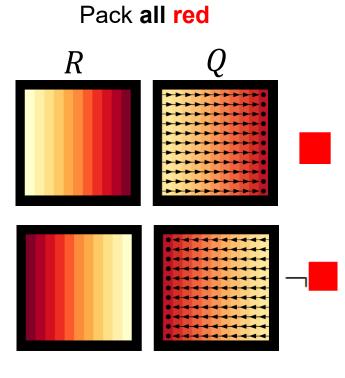
Motivation



Bin packing domain



Gridworld representation



Unpack all red

W1: Task Composition

Logic Operators

- OR: $A \vee B := \max\{R_A(s, a, s'), R_B(s, a, s')\}$
- **AND:** $A \wedge B := \min\{R_A(s, a, s'), R_B(s, a, s')\}$
- NOT: $\neg A := (R_{MAX}(s, a, s') + R_{MIN}(s, a, s')) R_A(s, a, s')$

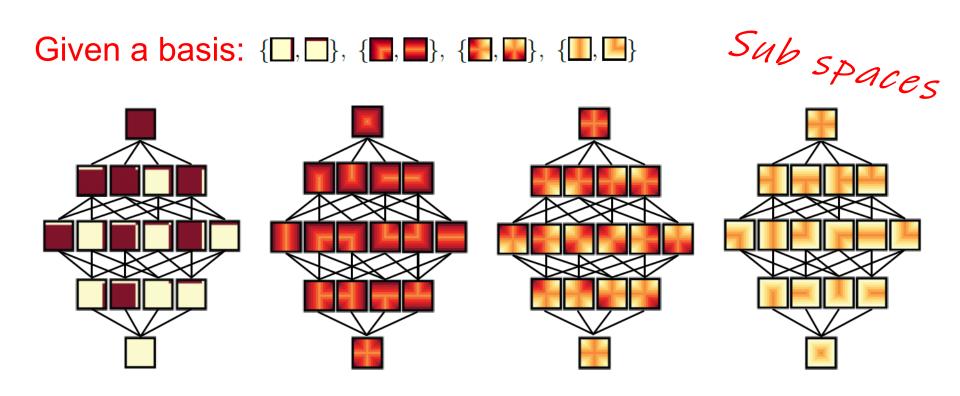
Reward bounds

W2: Different Composition Semantics

Bounds change semantics:

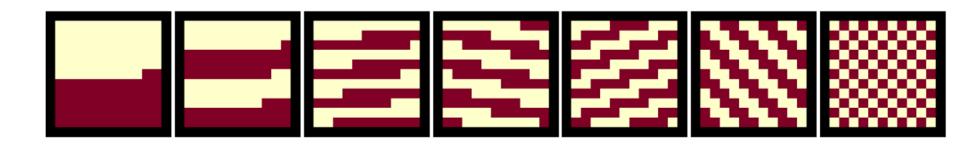


W3: Boolean Tasks with Dense Rewards



W4: Construct a Basis

Bounds: {**□**,**■**}



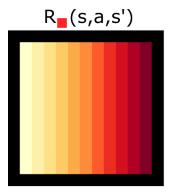
W5: World Value Function

Intuition: while solving one task, we should learn about other tasks that we may need to solve in the future

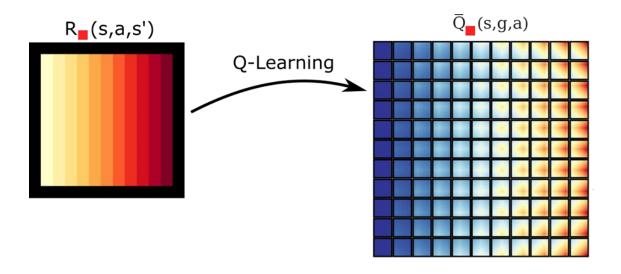
$$\overline{r}(s, g, a) = \begin{cases} \overline{r}_{MIN} & if \ g \neq s \in G \\ r(s, a) & otherwise \end{cases}$$

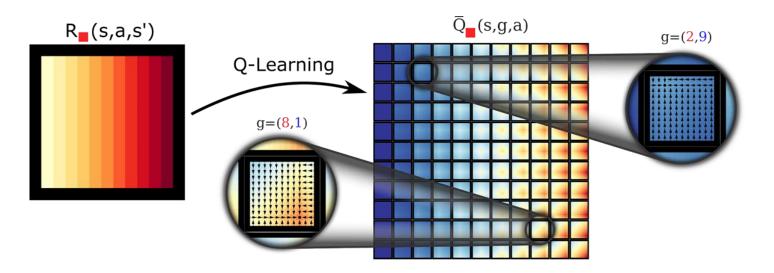
$$\overline{\pi}(s,a,{\color{red}g}) \rightarrow [0,1]$$

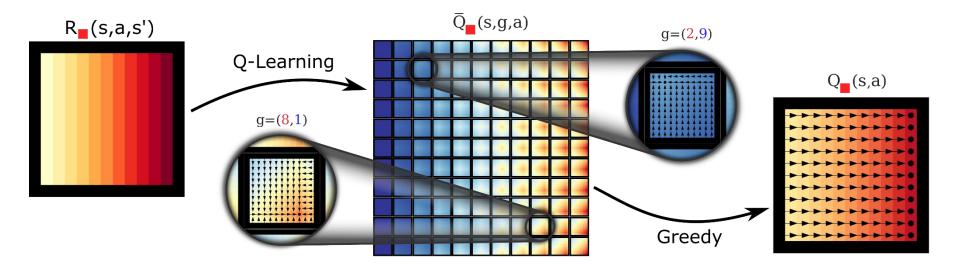
$$Q^{\overline{\pi}}(s, \boldsymbol{g}, \boldsymbol{a}) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \overline{r}(s_t, \boldsymbol{g}, a_t)\right]$$

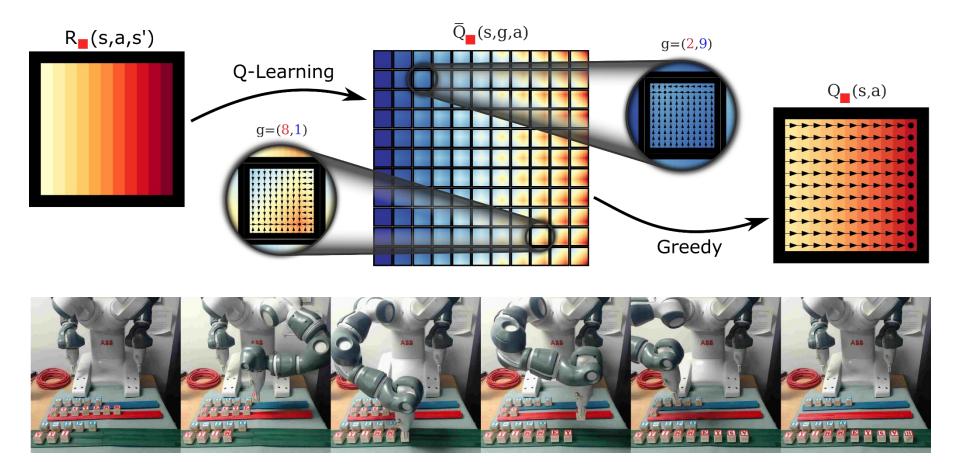


#6 Mastery

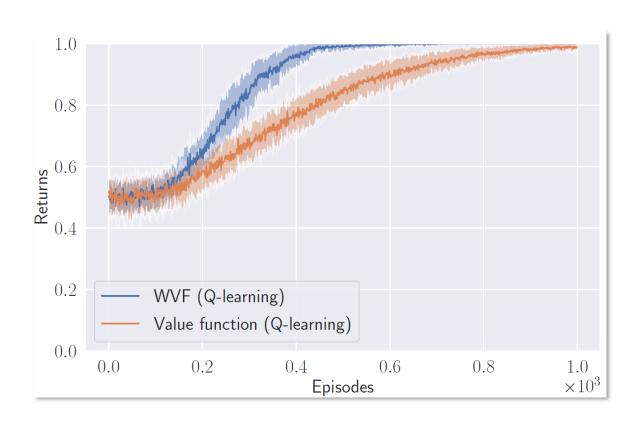








W7: Better sample-efficiency



W8: Skill Composition

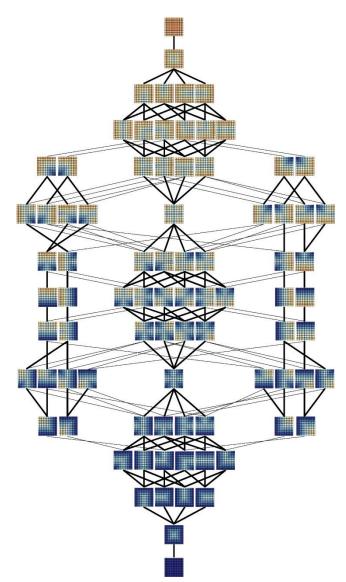
Logic Operators

- *OR*:
 - $Q_A \vee Q_B := \max\{Q_A(s, a, g), Q_B(s, a, g)\}$
- **AND**:
 - $Q_A \wedge Q_B := \min\{Q_A(s, a, g), Q_B(s, a, g)\}$
- NOT:
 - $\neg Q_A := (Q_{MAX}(s, a, g) + Q_{MIN}(s, a, g)) Q_A(s, a, g)$

W9: Homomorphism over tasks and skills

Logic Operators

- OR:
 - $Q_A \vee Q_B := \max\{Q_A(s, a, g), Q_B(s, a, g)\}$
- AND:
 - $Q_A \wedge Q_B := \min\{Q_A(s, a, g), Q_B(s, a, g)\}$
- NOT:
 - $\neg Q_A := (Q_{MAX}(s, a, g) + Q_{MIN}(s, a, g)) Q_A(s, a, g)$



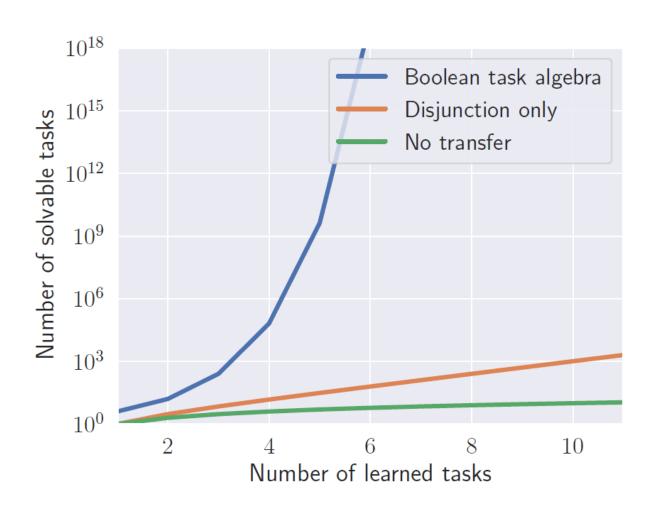
W10: Combinatorial explosion of skills

Logic Operators

- OR:
 - $Q_A \vee Q_B := \max\{Q_A(s, a, g), Q_B(s, a, g)\}$
- AND:
 - $Q_A \wedge Q_B := \min\{Q_A(s, a, g), Q_B(s, a, g)\}$
- NOT:
 - $\neg Q_A := (Q_{MAX}(s, a, g) + Q_{MIN}(s, a, g)) Q_A(s, a, g)$

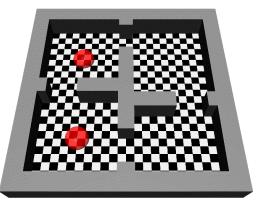


W11: Super-Exponential explosion of skills

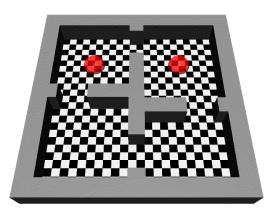


W12: Any RL Algorithm and Environment

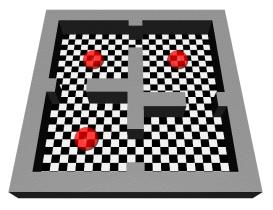
DQN/TD3/SAC/PPO/etc Tabular/Discrete/continuous/etc



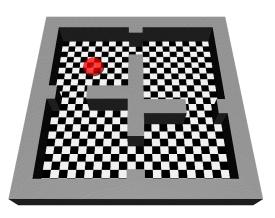
Skill: LEFT



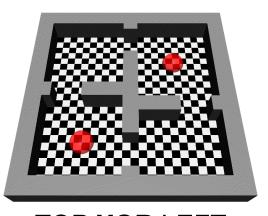
Skill: TOP



TOP **OR** LEFT



TOP **AND** LEFT



TOP **XOR** LEFT

And much more Ws!!!

Come chat at our poster

