
Skill Machines: Temporal Logic Skill Composition in Reinforcement Learning
Geraud Nangue Tasse*, Devon Jarvis, Steven James and Benjamin Rosman

University of the Witwatersrand, Johannesburg, South Africa

Solving temporal logic tasks specified by regular languages
without further learning by composing skill primitives

We want agents (e.g robots) that can solve

multiple complex tasks in an environment

(e.g real world) without further learning

In general (for 𝑃 environment propositions/sub-goals):

• Spatial curse: Eventually 22
𝑃

• Temporal curse: Always 22
𝑃

Task: “Navigate to a button
 and then to a cylinder
while never entering blue regions”

LTL:

Agent needs to:
1. Eventually

2. Then eventually

3. while always

Learned skills (Options)
• “Go to a button” 𝑭

• “Go to a blue region” 𝑭

• “Go to the cylinder” 𝑭
Reward Mach ine Va lue iterat ion Sk i l l Mach ine

E.g. 𝑀

where

C = { }

“Deliver coffee to the office and never break a decoration”

“Go to the office but not until you have coffee”

What we want

For spatial curse
• Task primitives (𝑀𝑝): Composable MDPs for eventually satisfying each proposition

• Skill primitives (𝑸𝑝): WVFs for each task primitive

For temporal curse
• Constraints (C): Propositions to always keep True or False in an episode
• Augments the state space of task primitives

Curses of dimensionality

Zero-shot transferSolution: primitives

Few-shot transfer

Reward machine to skill machine

Defining tasks is hard!
Reward design requires expert knowledge

Learning is slow!
Sample efficiency in RL is terrible

then𝑭 𝑭

[1] R. T. Icarte et al., “Using reward machines for high-level task specification and
decomposition in reinforcement learning,” ICML, 2018
[2] G. Nangue Tasse et al., “World value functions: Knowledge representation for
multitask reinforcement learning,” RLDM, 2022.
 [3] G. Nangue Tasse et al., “A Boolean task algebra for reinforcement learning”
NeurIPS, 2020.

Plan over RM (e.g value iteration) then pick skills greedily

ICLR

When reachabil ity doesn’t hold

When choosing ski l ls greedi ly is bad

We can improve the zero-shot policy to optimality by using any off-policy
algorithm (e.g. Q-learning)

	Slide 1

