Using NEAT to Learn Operators for Flexible Boolean Composition
within Reinforcement Learning

Amir Esterhuysen Steven James
School of Computer Science and Applied Mathematics ~ School of Computer Science and Applied Mathematics
University of the Witwatersrand University of the Witwatersrand
Johannesburg, South Africa Johannesburg, South Africa
amiresterhuysen@gmail.com steven. james@wits.ac.za
Geraud Nangue Tasse Benjamin Rosman
School of Computer Science and Applied Mathematics ~ School of Computer Science and Applied Mathematics
University of the Witwatersrand University of the Witwatersrand
Johannesburg, South Africa Johannesburg, South Africa
geraud.nanguetassel@wits.ac.za benjamin.rosmanl@wits.ac.za
Jonathan Shock

Department of Mathematics
University of Cape Town
Cape Town, South Africa

jonathan.shock@uct.ac.za

Abstract

Skill composition is a growing area of interest within Reinforcement Learning (RL) research. For example, if designing a
robot for household assistance, we can not feasibly train it for every task it might face during a period of months or years.
Instead, it could benefit from having a set of broadly useful skills and the ability to adapt or combine these skills to deal
with specific situations. This approach mimics the way in which humans actually learn—by gradually expanding their
knowledge base of basic skills which can be combined in endless ways, instead of independently learning new abilities
from scratch each time a novel problem arises. Existing work has demonstrated how simple skills can be composed using
Boolean operators to solve new, unseen tasks without further learning. However, this approach assumes that the learned
value functions for each atomic skill are optimal, an assumption which is violated in most practical cases. We propose a
method that instead learns operators for composition using evolutionary strategies. We empirically verify our approach
in tabular and high-dimensional environments. Results demonstrate that our approach outperforms existing composi-
tion methods when faced with learned, suboptimal behaviours, while also promoting robust agents and allowing for
transfer between domains.

Keywords: Neuroevolution, NEAT, Reinforcement Learning, Composition

1 Introduction

The development of versatile agents capable of adapting to new contexts and challenges is a critical goal across artificial
intelligence and particularly in RL. One approach is to compose learned tasks via the fundamental Boolean operations—
disjunction (OR), conjunction (AND), negation (NOT)—with a fixed, provably optimal set of composition operators [2].

Tasks are modelled as a Markov Decision Process (MDP), given by a tuple of the form (S, A, p,r,v), where (i) S is the
state space, (ii) A is the action space, (iii) p(s’|s, a) governs transitions between states in S after taking some action in A,
(iv)r: S x A x S — Ris the reward function, and (v) v € [0, 1] is a discount factor.

Consider two tasks with optimal world value functions (an extended value function that carries knowledge of all goals in

an environment [3]) given by Q} and Q5. Let Q7,;.., Q.. be respectively the optimal world value functions in the case
where all goals in the environment are marked as undesirable and desirable. Then for s € S,g € G C S, and a € A, tasks
are composed as follows:

o disjunction: (Q} v Q3)(s,g,a) = max{Qj(s, g, a), Q5(s,g,a)}
* conjunction: (Q7 A Q5)(s, g, a) = min{Q7 (s, g,a),@3(s,9,a)}
o negation: (—Q7)(s,9,a) = (Qpin (5, 9,0) + Qriaa(s, 9, 0) — Q1(s, g, a)

This approach, however, only guarantees success when an agent has optimal knowledge of the behaviours being
composed—a requirement that restricts the viability of Boolean composition methods in real-world problems. We thus
propose that the agent learns how to compose suboptimal behaviours. We adapt the NEAT algorithm (Neuroevolution
of Augmenting Topologies) [4] to learn an alternative set of robust composition operators which outperform the fixed
Boolean algebra approach [2] when faced with challenges that often manifest in practical RL environments. Our ap-
proach is shown to be viable first in a tabular setting. We are then able to learn operators in the tabular setting which
can be applied with positive results in the function approximation setting—despite these environments differing in scale
and state-space. This is particularly encouraging for the goal of producing robust RL agents.

2 Learning Composition Operators

NEAT uses a genetic algorithm to evolve neural network solutions [4]. This simultaneously optimises network weights
and the overall network topology, exploring a much larger space of candidate networks compared to standard neural
network training algorithms like backpropagation. Our goal is to produce alternative operators f,, fx, f-—each a neural
network—which outperform their Boolean algebra equivalents when given suboptimal input. Algorithm 1 describes
how we use the underlying principles of NEAT to learn neural networks which act as robust composition operators for
building RL skills. The evolutionary process is guided by a fitness function—by default this is the total reward achieved
over a number of evaluation episodes. Code for the base NEAT implementation is found in the NEAT-Python library [1].

2.1 Differentiable Approximations

We briefly consider a middle ground between these learned functions and the Boolean set of fixed operators. The oper-
ators for optimal disjunction and conjunction are respectively the max and min functions. It is reasonable to hypothesise
that even when these operators are insufficient, something similar might perform well. We examine three differentiable

functions which approximate the min and max (note there is no analogue for the negation operator). Let Q; and @, be
world value functions in this environment. For a given triplet (s, g,a) € SxGx A, let g1 = Q1(s,g,a) and ¢z = Q2(s, g,a).

Then,

_ Qe f g et
® Boltzmann(q1,q2) = T

1
* LogSumExp(qi,q2) = — log (e® 9t + e*92)
a

1 eoz-ql ea q2
o MellowMax(q1,q2) = — log (5 + 5 >
a

If we let approx signify any one of these functions, we have that lim approx(qi,q2) = min(¢,q2) and
a——00

lim approx(gi,q2) = max(¢1, ¢2). The parameter « is optimised by iterating through potential values.
a—00

Algorithm 1 Learning Composition Operators

Inputs:
Desired Composition type (OR/AND/NOT), set of base task world value functions
Q: {Ql...Qn},whereQi :SxGxA—Rforalli=1...n.
Initial Population Size Num_Pop
Number of generations Num_Gen
Number of evaluation episodes Num_Eval
Initialize:
population of Num_Pop networks
for generation = 1 to Num_Gen do
for f € population do
fitness < 0
for evaluation episode = 1 to Num_Eval do
Randomly generate specific desired composition within type (eg RED OR BLUE)

Fetch relevant value functions Qpqse C Q
while episode not terminated do

Qcomposed <~ f(Qbase)
Randomly generate starting state s for agent
Select action a = arg max,c 4 Qcomposed(s, g,a)
Execute action a to collect reward r and reach state s’
fitness < fitness +r
end while
end for
Assign final fitness to f
end for
Arrange all f € population by fitness
Discard networks f € population with lowest fitness
Choose networks f € population with highest fitness to act as parents
Mate parents together to produce children which are added to population
Randomly mutate children to add variety to population
Update population going into next generation
end for
return fpeor = {f1... fn}, the n highest-fitness networks produced across entire run

3 Tabular Experiments

The simplest setting we consider is a 4 goal 9 x 9 Four Rooms domain with deterministic transitions. Base tasks are
pairwise disjunctions between goals—for example, the base tasks (Gi1 OR G2) and (G2 OR G3) are used to define the
composed task (G; OR G2) AND (G2 OR G3) =Ga.

o I B e T e
[= - -
'
1
-~ [N EE NN .
E ¥
2
¢+ S s =
f=
@®
(3]
=
-6 = 1
B | earned
Fixed
-
o ated Ontimaity Figure 2: Policies for a specific conjunction task in the case

Estimated Optimalit
stimated Optimaiity of learned (left) and fixed (right) operators. Circles indi-

cate the agent choosing to stay in its current state. The

Figure 1: NOT performance for value functions of increas- : : ;
goal is shown by the red cell in the bottom left of the grid.

ing optimality. Error bars represent 95% confidence inter-
val over 5 runs. The dotted horizontal line represents the-
oretically optimal performance. A significance marker of
* indicates a p-value < 0.05, ** is a p-value < 0.01, **is a
p-value < 0.001, and **** is a p-value < 0.0001

Figure 1 shows returns across value functions of increasing optimality (estimated through convergence patterns during
training) when performing negation. Learned operators exhibit superior performance to their fixed Boolean equivalents
for all suboptimal value functions, and in the case of optimal value functions we match fixed operator performance.
Figure 2 depicts how a resultant policy may differ based on the composition operator. Using a learned conjunction
operator, the agent gets stuck at 3 states in the bottom right of the grid, while being able to achieve the desired goal from
all other states. With the fixed Boolean min operator, the agent gets stuck at 12 different states—clearly learned operators
can achieve tangible improvements under suboptimal conditions.

We next consider modifications beyond standard suboptimality, depicted in Figure 3. First, the case of a larger 13 x 13
Four Rooms with 12 goals. This change leads to the number of base tasks growing from 6 to 66. Value functions are
estimated to be 50% optimal. Learned operators achieve a significant advantage across all 3 operations. Second, when
stochastic transition dynamics are incorporated into the original Four Rooms setting. A stochasticity level of p € (0,1)
means an agent will move in its desired direction with probability 1 — p, and has equal probability p/3 of moving in
each of the remaining directions. Value functions are trained to optimality in this case, with the presence of randomness
disrupting the Boolean algebra framework. Here we see significant advantages for learned operators across the spectrum
of stochasticity when performing conjunction, with differentiable approximations remaining competitive. Finally, we
consider a non-viable reward function that allows us to learn the base tasks but which leads to undesired behaviour
when performing conjunction and negation on these base tasks. To circumvent this issue, we optimise success rate of
achieving the correct goal—not reward. Again, optimal value functions are used and we see learned operators with an
advantage. For disjunction, optimal behaviour is not disrupted by the limitations of the reward function.

* ns

ot . ns " B
. PR L I N I B I
25 0
. L[

-1
25

-2

-3

W«
-100 I Fixed
-125
-150 *

B |eamed
= Approxim
%
(c) Non-viable reward function—note suc-

(a) Larger environment (b) Stochastic transitions cess rate on the y-axis.

B Leamed
W Fixed
B Approximation

Mean Return
Mean Return

B Learned
I Fixed
W Approxim 02

Mean Success Rate

2 S =4 =

'

i

i

_ |
i

i

i

i

_ i
i

i

_ :
i

i

i

i

i

_ :
i

i

i

_ 1
i

i

i

00
OR AND NOT

OR AND NOT % 10% 15% 2% 25 Composition Performed

Composition Performed Amount of Stochasticity

Figure 3: Error bars represent 95% confidence interval taken over 10 runs. A significance marker of * indicates a p-value
< 0.05, **is a p-value < 0.01, *** is a p-value < 0.001, and **** is a p-value < 0.0001. ns indicates the discrepancy is not
significant.

4 Transfer Between Tabular and Function Approximation Settings

Fundamentally, we wish to promote behaviour that is robust and adaptable. It is thus desirable that we can take opera-
tors learned in a source tabular setting and apply them in a target higher-dimensional setting—with distinct state-space
representation. Harnessing existing knowledge in new and more complex domains is an important step for the gen-
eralising skills of an RL agent, while also allowing for more efficient resource usage—especially as running NEAT in
this higher-dimensional setting is significantly more compute-intensive. We consider two cases: i) learning operators in
the source domain before zero-shot transferring to the target domain, and ii) learning operators in the source domain
before fine-tuning them in the target domain. In this study, Four Rooms acts as our smaller source domain and an en-
vironment called Boxman is the more complex target domain—here the state-space is described a higher-dimensional
vector of 84 x 84 RGB images and agents traverse around obstacles to collect desired objects, identified by 6 colour-shape
combinations (e.g. “blue circle”).

Figure 4 compares four approaches when testing conjunction (AND) in the Boxman domain:

1. Learn AND operator fully in Four Rooms.
2. Learn AND operator fully in Boxman.

3. Learn AND operator in Four Rooms, then fine-tune it in Boxman with a scaled-down NEAT run (fewer genera-
tions/population members/evaluation episodes).

4. Use the min function as AND operator, as defined in the optimal Boolean algebra framework.

Edk

I . 1

.
04 —
mmm Boolean Operator

0 Samples
Learned in Four Rooms, Zero-Shot Transfer to Boxman
0 Samples
mam Learned in Four Rooms, Fine-Tuned in Boxman
~15000 Samples
mm Learned in Boxman
04 ~B60000 Samples
0.0

Figure 4: Mean Return for operators of different sources when performing conjunction. Number of Boxman environment
samples needed to produce each operator are indicated. Results taken over 10 runs in each setup. Error bars represent
95% confidence interval. A significance marker of *** indicates a p-value < 0.001, while **** indicates a p-value < 0.0001

Mean Return
o
®

o
N

The number of Boxman environment samples observed during each case acts as an efficiency measure. The Boolean
algebra and zero-shot transfer of a tabular operator require 0 Boxman samples. All uses of NEAT outperform the min
conjunction operator. There are two important conclusions that one can take from this. Firstly, the zero-shot transfer of
operators learned in a tabular domain with differing state space leads to significantly greater returns than the Boolean
operator framework. Secondly, minimal fine-tuning of these operators produces roughly equal return to a NEAT run
undertaken solely in Boxman, while requiring around % as many environment samples.

5 Conclusion

Composition of learned behaviours is a growing area in reinforcement learning. Leveraging knowledge already pos-
sessed by an agent into new forms aids efficiency and brings us closer to realistic human-like learning. Optimal Boolean
composition operators have been determined given that we have optimal knowledge of the tasks being composed. In
practice, however, this is not always the case. In this work, we have examined how using NEAT to learn alternative
composition operators stands up to multiple sources of unpredictability within RL environments for which the Boolean
algebra framework does not account and where it fails to achieve desired performance—non-converged value functions,
stochastic transitions, reward functions not fit for achieving composed tasks, and a higher-dimensional function approx-
imation environment.

From this foundation, we emphasise the ability to transfer learned composition operators between domains with dif-
ferent state spaces. Operators learned in a tabular setting achieve competitive performance when applied in a function
approximation setting, either through a zero-shot transfer or after being fine-tuned in this new environment. This trans-
fer process projects strong generalisation and life-long learning abilities for RL agents.

Through this, we keep in mind certain limitations: including sample-inefficiency and an element of unpredictability to
operator performance. Future work should focus on alleviating these issues, while building further on the encouraging
robustness that arises from learning composition operators.

References

[1] Alan McIntyre, Matt Kallada, Cesar G. Miguel, Carolina Feher de Silva, and Marcio Lobo Netto. neat-python, 2017.

[2] Geraud Nangue Tasse, Steven James, and Benjamin Rosman. A boolean task algebra for reinforcement learning. Advances in Neural
Information Processing Systems, 34:9497-9507, 2020.

[3] Geraud Nangue Tasse, Benjamin Rosman, and Steven James. World value functions: Knowledge representation for learning and
g) ge rep g
planning. Bridging the Gap Between Al Planning and Reinforcement Learning Workshop at ICAPS, 2022.

[4] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies. Evolutionary computation,
10(2):99-127, 2002.

	Introduction
	Learning Composition Operators
	Differentiable Approximations

	Tabular Experiments
	Transfer Between Tabular and Function Approximation Settings
	Conclusion

