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Abstract

This thesis addresses the fundamental challenge of creating agents capable of solving a wide
range of tasks in their environments, akin to human capabilities. For such agents to be truly useful
and be capable of assisting humans in our day-to-day lives, we identify three key abilities that
general purpose agents should have: Flexibility, Instructability, and Reliability (FIRe). Flexibility
refers to the ability of agents to adapt to various tasks with minimal learning; instructability
involves the capacity for agents to understand and execute task specifications provided by
humans in a comprehensible manner; and reliability entails agents’ ability to solve tasks safely
and effectively with theoretical guarantees on their behavior.

To build such agents, reinforcement learning (RL) is the framework of choice given that it is the
only one that models the agent-environment interaction. It is also particularly promising since it
has shown remarkable success in recent years in various domains—including gaming, scientific
research, and robotic control. However, prevailing RL methods often fall short of the FIRe
desiderata. They typically exhibit poor sample efficiency, demanding millions of environment
interactions to learn optimal behaviors. Task specification relies heavily on hand-designed reward
functions, posing challenges for non-experts in defining tasks. Moreover, these methods tend to
specialize in single tasks, lacking guarantees on the broader adaptability and behavior robustness
desired for lifelong agents that need solve multiple tasks.

Clearly, the regular RL framework is not enough, and does not capture important aspects of
what makes humans so general—such as the use of language to specify and understand tasks. To
address these shortcomings, we propose a principled framework for the logical composition of
arbitrary tasks in an environment, and introduce a novel knowledge representation called World
Value Functions (WVFs) that will enable agents to solve arbitrary tasks specified using language.
The use of logical composition is inspired by the fact that all formal languages are built upon
the rules of propositional logics. Hence, if we want agents that understand tasks specified in any
formal language, we must define what it means to apply the usual logic operators (conjunction,
disjunction, and negation) over tasks. The introduction of WVFs is inspired by the fact that
humans seem to always seek general knowledge about how to achieve a variety of goals in their
environment, irrespective of the specific task they are learning.

Our main contributions include: (i) Instructable agents: We formalize the logical composition
of arbitrary tasks in potentially stochastic environments, and ensure that task compositions
lead to rewards minimising undesired behaviors. (ii) Flexible agents: We introduce WVFs
as a new objective for RL agents, enabling them to solve a variety of tasks in their environ-
ment. Additionally, we demonstrate zero-shot skill composition and lifelong sample efficiency.
(iii) Reliable agents: We develop methods for agents to understand and execute both natural
and formal language instructions, ensuring correctness and safety in task execution, particularly
in real-world scenarios. By addressing these challenges, our framework represents a significant
step towards achieving the FIRe desiderata in Al agents, thereby enhancing their utility and
safety in a lifelong learning setting like the real world.
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Chapter 1

Introduction

Roovh H coffee rotion Decoration

i €
Rovot people in offe

Figure 1.1: Illustration of a robot in an office environment.

Imagine you are managing a bustling office space with the assistance of a robot (illustrated in
Figure 1.1). There are multiple tasks you may want the robot to help you with, such as: Deliver
important mails to the office until there is no mails left, then deliver coffee to the office while there
are people craving coffee in the office, then patrol the Archive-room, Break-room, Conference-
room, and Desk-area for security and to see if anyone else needs help, while never breaking
a decoration. This illustrates one of the ultimate goals in artificial intelligence (AI): Beyond
the philosophical and scientific study of intelligence, we want to build agents that are capable of
solving a variety of cognitive and physical tasks similarly to humans [Russell and Norvig 2016].

For such agents to be maximally useful and assist humans in their day-to-day lives solving many
real life problems—for example domestic robots in our homes, industrial robots in factories,
and service robots in hospitals and public spaces—we identify three main desiderata: agents
should have Flexibility, Instructability, and Reliability (FIRe).

1



(i) Flexibility w'f : Similarly to humans, there is not one specific task we want an agent to
specialise in. Instead, agents should be able to solve a variety of tasks in their environment.
Preferably, this should also require minimal amount of learning. For example, the office
robot should be able to navigate to various locations like the coffee and decoration ones,
and should also be able to avoid the decorations while getting coffee.

(ii) Instructability g*: We should be able to specify what task we want the agent to solve,
and the agent should be able to understand said specification to correctly achieve it.
Preferably, this should be done in a human understandable way, such that it is not just Al
experts that can specify tasks. For example, the office robot should be able to understand
and solve the natural language specified task where it must deliver mail, then coffee then
patrol the rooms.

(i) Reliability : Agents should be able to solve any task given to them with theoretical
guarantees on their behaviour. This is particularly important if we truly want to ultimately
have agents that can safely act alongside humans in the real world and be helpful. For
example, the office robot should be able to solve any task in its environment safely, such as
delivering mails to the office and patrolling rooms A-B-C-D without breaking decorations.

1.1 Reinforcement learning

One way humans learn to make decisions and adapt behaviours is based on feedback from
the environment. From the moment we are born, we initially explore different policies—what
actions to take in different states of the environment—to understand their consequences. When
an action leads to a favorable outcome or reward, the we are more likely to repeat that action
in similar situations in the future. Conversely, if an action results in a negative outcome or
punishment, the we are less likely to repeat that action. Over time, through repeated experiences,
we develop associations between actions and cumulative rewards (a value function), allowing
us to make more informed decisions to maximise rewards. The underlying neural mechanisms
involve the dopamine system, which plays a crucial role in encoding reward prediction errors
and updating behavioural strategies accordingly [Schultz ef al. 1997].

This process motivates the sub-field of reinforcement learning (RL) in Al Here, an agent receives
a scalar reward signal as it acts in its environment, and learns by trial and error what actions
maximises its returns [Sutton and Barto 1998]. RL is a promising framework for building general
agents like humans, given its similarity to how humans learn and the numerous successes it has
had within the last decade in tasks such as: playing games at super-human levels [Mnih et al.
2015; Fu 2016; Schrittwieser et al. 2020; Niu et al. 2024], helping with scientific discoveries
[Degrave et al. 2022; Fawzi et al. 2022], and robot control in simulation and reality [Mirowski
et al. 2017; Peng et al. 2018; Zhao et al. 2020; Zhou et al. 2023].

Despite these achievements, prevailing RL methods often fall short of the FIRe desiderata:

(i) Sample efficiency (@) They typically exhibit poor sample efficiency, demanding mil-
lions of environment interactions to learn optimal behaviours. While this is similar to
humans in that learning complex tasks is often slow, unlike humans, RL agents usually
must learn each new task independently. This lack of flexibility is clearly undesirable for
robots that will need to assist us in the real world— which are often heavily constrained
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in terms of time, energy, and resources. Additionally, wear and tear from repeated trial
and error could lead to faulty robots with safety risks and pricey repairs.

(ii) Task specification (@) They rely heavily on hand-designed reward functions, posing
challenges for non-experts in defining tasks. The reward function often requires multiple
iterations of fine-tuning (reward engineering) by an expert to capture the intended task,
and often leads to unintended side effects or undesirable behaviours that exploit loopholes
in the reward system (reward hacking) when misspecified [Amodei et al. 2016]. This
lack of instructability is clearly undesirable as it compromise safety and efficiency in
real-world applications, potentially causing harm to humans or the environment.

(iii)) Generalisation (@) They often specialise in a specific task and lack guarantees on the
broader adaptability and behaviour robustness desired for lifelong agents that need to
solve multiple tasks. This lack of reliability is clearly undesirable as it undermines trust
and confidence in using RL agents for various tasks, hindering their widespread adoption
and integration into society and industry.

A major challenge is thus in designing sample-efficient agents that are easily instructable and
that can transfer their existing knowledge to solve new tasks quickly [Taylor and Stone 2009].

1.2 Lifelong learning

The FIRe desiderada is particularly important in the lifelong setting, where just like humans
in the real word, an agent is presented with a number of tasks during its lifetime and should
leverage knowledge learned from previous tasks to solve new ones [Thrun 1996]. However,
given the challenges outlined in Section 1.1, it is clear that the standard RL framework does not
capture important features that make humans such good lifelong learners. For example, language
plays and important role in the way humans understand tasks and their solutions.

Language, whether it be natural, such as English as spoken by humans, or formal, like linear
temporal logics (LTL) [Pnueli 1977] as studied in Al provides an intuitive way for people to
specify tasks and instructions to satisfy goals. This makes humans instructable (g2¥ ). However,
instruction following is a difficult problem for agents because they need to simultaneously learn
(a) the meaning of the instructions to solve the task, (b) the representation of the world in which
the task is to be solved, and (c) a sequence of actions that will lead to task completion. This
is even more challenging in the lifelong learning setting, where an agent must also acquire
knowledge that will allow it to efficiently solve new unseen tasks (@)

One of the most common approaches to this problem is to encode a language command into
a real-valued vector embedding. The language embedding, together with the agent’s current
state, is then used to parametrize the agent’s policy [Blukis et al. 2020; Chaplot et al. 2018;
Tambwekar er al. 2021]. These end-to-end methods succeed in the presence of a simulator, but
require large amounts of data. These methods also suffer from generalization issues as the agents
require a large number of samples from the environment for every novel task presented [Lake
and Baroni 2018], and they provide no guarantees on the resulting behaviours (@)
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1.3 The need for composition

To overcome these issues simultaneously, one promising approach is to leverage the princi-
ple of compositionality, which states that a complex expression’s meaning is defined by the
meanings of its constituent expressions and the rules used to combine the meanings of these
expressions [Szab6 2020]. Here, an agent first learns individual skills and then combines them
for novel behaviours.

There are several notions of compositionality in the literature, such as spatial composition
[Todorov 2009; van Niekerk et al. 2019], where skills are combined to produce a new single
behaviour to be executed to achieve sets of high-level goals “pick up an object that is both blue
and a box”), and temporal composition [Sutton et al. 1999; Jothimurugan et al. 2021], where
sub-skills are invoked one after the other to achieve sequences of high-level goals (for example,
“pick up a blue object and then a box™).

1.3.1 Spatial composition

Spatial composition is commonly achieved through a weighted combination of skills [Barreto
et al. 2018; Peng et al. 2019; Alver and Precup 2022b]. Notably, work by Nangue Tasse et
al. [2020b] has demonstrated spatial composition using logic operators. They introduced a
formal framework for specifying tasks using conjunction (AND), disjunction (OR), and negation
operators (NOT), and how to similarly apply them on learned skills to generate provably
optimal solutions to new tasks () Not only does this allow for safer and interpretable
reward specification—since any new task reward function can be composed of well-understood
components (=" )—it also leads to a combinatorial explosion in an agent’s ability—producing

semantically meaningful behaviours without further learning ( <% ).

Is this enough? While these agents seem to be FIRe, they suffer from a number of shortcomings.
Mainly, notice that spatial composition is not enough for solving long-horizon tasks—such as
the example we gave for the office environment in Figure 1.1. In these instances, it is often near
impossible for the agent to learn, owing to the large sequence of actions that must be executed
before a learning signal is received [Arjona-Medina et al. 2019]. Additionally, Nangue Tasse
et al. [2020b] restricts the specification of tasks and corresponding skills learned to only goal-
reaching ones in deterministic environments, making tasks with arbitrary rewards in stochastic
environments unspecifiable within the framework (@, @) Finally, despite the guarantee that
task compositions will have the correct semantics, they also provide no guarantee that the tasks

being composed have the correct reward functions—such that maximising those rewards indeed
leads to desired behaviours (@)

1.3.2 Temporal composition

One of the most common approaches to temporal composition is to learn options [Sutton ef al.
1999]—sub-skills that can be executed sequentially ( <% ). These are then used for achieving the
sub-goals present in tasks specified using formal languages—such linear temporal logics [Pnueli
1977] (g )—while learning a high-level policy over the options to provably solve the task,
and then reusing the learned options in new tasks [Araki et al. 2021; Icarte et al. 2022] ()
However, other works like Vaezipoor et al. [2021] have proposed end-to-end neural network
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architectures for learning sub-skills from a training set which are then demonstrated emperically
to enable better sample efficiency and generalisation to similar new tasks.

Is this enough? While these agents also seem to be FIRe, they also suffer from a number of
shortcomings. Mainly, Liu et al. [2022] observe that for all these prior works, some of the
sub-skills (e.g., options) learned from previous tasks can not be transferred satisfactorily to new
tasks and provide a method to determine when this is the case (@) For example, if the agent
has previously learned an option for “getting blue objects” and another for “getting boxes”, it
can reuse them to “pickup a blue object and then a box”, but it cannot reuse them to “pickup a
blue object that is not a box, and then a box that is not blue”. We can observe that this problem
is because all the compositions in prior works are either strictly temporal or strictly spatial.

1.4 Aims and contributions

The main aim of this work is to build a principled framework that leverages the principle of
composition to simultaneously address the problem of task specification, sample efficiency, and
generalisation, thereby bringing us a step closer towards the FIRe desiderata. Precisely, we (i)
extend the logical composition framework of Nangue Tasse et al. [2020b] to stochastic tasks
with arbitrary provably safe rewards; (ii) introduce a new knowledge representation, namely
world value functions (WVFs), which defines a new objective for RL agents to be provably
flexible; (ii1) leverage world value functions and logical composition to produce agents that can
provably solve a variety of tasks in their environment specified using natural or formal language.

We also focus our attention on model-free reinforcement learning——where an agent only has
access to the rewards and observations for each environment interaction when learning. This
constraint ensures our framework is applicable even when the reward and transition functions
are not known to the agent. We briefly describe our main contributions:

(i) Instructable agents g=* [Part I]: In Chapter 3, we formally define the logical composition
of tasks and explore the semantic meaning of such compositions. Given that we are now
able to specify tasks as a composition of other tasks, Chapter 4 ensures that the rewards of
tasks in general minimise the probability of leading to optimal but undesired behaviours.

(i1) Flexible agents s'f [Part II]: In Chapter 5, we propose a new goal for RL agents to learn
world value functions which provably lead to the ability to solve any given goal-reaching
task in the environment. We then show in Chapter 6 that zero-shot skill composition now
holds for goal-reaching tasks with potentially stochastic dynamics. Finally, we show in
Chapter 7 that this leads to agents that are provably sample efficient in lifelong RL.

(iii)) Reliable agents [Part III]: In Chapter 8, we demonstrate how this ability to under-
stand task compositions and solve them without further learning can then be leveraged by
agents to reliably follow natural language instructions. However, the ambiguity in natural
language makes it hard to guarantee that the task specification and resulting compositional
behaviours are correct. One solution to this is to use formal languages, such as LTL, which
can be verified. In Chapter 9, we propose skill machines, a method for agents to provably
solve formal languages that are regular (like fragments of LTL). We then show in Chapter
10 that this compositional ability can be leveraged by robots to safely act in the real world.



Chapter 2

Background

As described in the introduction, there are three main areas of importance to us for designing
general purpose agents capable of solving a variety of tasks in an environment: Reinforcement
learning, logical composition, and temporal logic composition. In this chapter, we will give a
sufficient description of them as they pertain to the rest of this thesis.

For example, what actually is an environment, a task in the environment, rewards and the various
other key terms we have used so far? In Section 2.1, we describe what some of these terms mean
formally in the context of RL, and refer the reader to Sutton and Barto [2018] for a more detailed
introduction to RL. We then describe lattice theory in Section 2.2.1, since it is the algebraic
framework that formalises the notions of conjunction, disjunction, and negation. This is also the
framework used by Nangue Tasse et al. [2020b] to formalise the logical composition of tasks
and skills in RL—under various assumptions on the environment dynamics and task rewards.
Since we aim to extend this framework to more general tasks, we also describe it in detail in this
section. Finally, we describe formal languages and reward machines in Section 2.3, which are
essential for specifying temporal logic tasks.

2.1 Reinforcement learning

Reinforcement learning is a framework representing agents making sequential decisions in order
to maximise the sum of a scalar reward. At its core, the process involves the agent interacting
with an environment, learning from feedback (rewards) received for its actions, and adjusting
its decision-making strategy accordingly (Figure 2.1). This framework is particularly suited
for problems where decisions are made over time, and the outcomes of those decisions are
influenced by the state of the environment.

The foundation of mordern reinforcement learning lies in Markov decision processes (MDPs)
[Puterman 2014], which formalize decision problems by defining states, actions, transition
dynamics, and rewards. States represent possible situations in the environment, actions are the
choices available to the agent, transition dynamics dictate how the environment changes in
response to actions, and rewards quantify the desirability of outcomes.

The objective in reinforcement learning is to develop a policy, a function that maps states to
actions, in a way that maximises the cumulative reward the agent expects to receive over time.
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Figure 2.1: Illustration of agent-environment interaction [Sutton and Barto 1998]

Additionally, the value function plays a crucial role, estimating the total reward an agent can
expect to accumulate from a given state following a particular policy. We now define these
formally in the following sub-sections.

2.1.1 Markov decision processes

Markov decision processes (MDPs) provide a formal framework for modeling decision-making
problems in reinforcement learning, where an agent interacts with an environment to achieve
specific goals.

A state s of the environment at time ¢ is considered Markov if the probability of transitioning to
state " at time ¢ + 1 depends only on the current state s and action a, and not on the previous
history of states and actions. This property is expressed mathematically as:

P[Si41 = 3/‘515 =3, A = a] = P[Sp1 = 3/|So =54 =a,..,5%=s5A =d

A decision-making problem that satisfies the Markov property for all states is termed a Markov
Decision Process (MDP). Formally, an MDP is defined as a tuple (S, A, P, R, ) where,

» S is the state space, representing all possible states the environment can be in;

A is the action space, denoting all possible actions the agent can take;

P: S8 x Ax S — [0,1] is the transition function, defining the probability of transitioning
from one state to another given a particular action;

R: S x Ax S — Ris the bounded reward function, defining the immediate reward the
agent receives upon transitioning from one state to another given a particular action;

v € [0, 1] is the discount factor, representing the importance of future rewards relative to
immediate rewards.

For clarity, we will focus on MDPs with finite S and .4, but note that the theory also hold for
continuous S and A. The set of tasks can then be naturally defined as follows:

Definition 2.1. A set of tasks M is a set of MDPs in the same environment (S, A, P,~) that
differ only in their reward functions.



2.1.2 Goals and returns

In reinforcement learning the agent’s goal is informally to maximise its cumulative future reward.
This can be stated as the reward hypothesis:

All of what we mean by goals and purposes can be well thought of as the maximization of the
expected value of the cumulative sum of a received scalar signal (called reward). [Sutton and
Barto 1998]

This notion of goal may at first appear limiting but has proven to be sufficient for a wide range
of problems. Formally, the cumulative sum of rewards is defined as the refurn:

Gi=Rip1 + 7Ry + ... = Z Y Ry 2.1
k=0

To ensure that G, is finite, tasks with v = 1 are assumed to be episodic—they terminate at
absorbing states. These are states ¢ in an absorbing space G such that P(g,a,g) = 1 and
R(g,a,g) = 0 for all actions. That is, the agent always receives zero rewards in ¢ € G and can
never transition out of it once reached.

2.1.3 Policies and value functions

The goal of the agent is to compute a policy that optimally solves a given task. Formally, a policy
7 1s defined as the probability of selecting each action in a given state. That is,

m:SxA—[0,1]
(s,a) — P[A; = a|S; = §]

A given policy 7 is characterised by a state-value function V™, which is the expected return of
starting at a given state and following 7 thereafter. That is,

V. § >R
S EW[Gt‘St = S}

Similarly, the action-value function ()™ under a policy 7 is defined as,

RQT:SxA—=R
(s,a) — ET[G¢|S; = s, Ay = a

The action-value function is particularly useful in model-free reinforcement since it enables
agents to learn optimal actions for each state without the need for transition dynamics.

Using the recursive property of Gz, the value functions can be shown to satisfy the following
Bellman equations,

V™(s)=> w(s,a) > P(s|s,a) (R(s,a,) + V() 2.2)

acA s'eS



Q"(s,a) = Y _ P(s']s,a) (R(s,a,s") +7V7(s)) (2.3)

s'eS

By defining a partial ordering over policies, it can be shown that 37* > 7, V&, which leads to
the optimal value functions,

V™ (s) = V*(s) and Q™ (s,a) = Q*(s,a) Vr*

These give rise to the following Bellman optimality equations for value functions,

acA

V*(s) = max (Z P(s,a,s") (R(s,a) + ’}/V*(S/))) (2.4)

s'eS
Q'(s,a) = > Pls,a,8')(R(s,a) + ymax Q*(s', a')) 2.5)
ey a’eA
which are written more succinctly using the Bellman optimality operator as follows,
([TQ"] (s,a) = Z P(s'|s,a) (R(s, a,s) +ymaxQ*(s, a')] . (2.6)
gy a’'eA

An optimal policy 7* can also be obtained by acting greedily on the optimal action-value function
Q*. That is,

(2.7)

T (s,a) = {1 a = argmax,e 4 Q"(s, a)

0 otherwise

Hence, there always exists a deterministic optimal policy. Given this, we will henceforth only
focus on deterministic policies 7: S — A in our theory.

2.1.4 Learning optimal policies and value functions

There are several algorithms for learning optimal policies and value functions in RL [Sutton
and Barto 1998], ranging from: (i) Model-based ones which assume that the dynamics of the
environment are known (or learned), with foundational examples being policy iteration and value
iteration (ii) Model-free ones learn solely by trial and error interactions with the environment,
with a foundational example being Q-learning.

Since we are interested in ultimately having agents that can solve tasks in complex environments
with unknown transition probabilities and reward functions, we will constrain ourselves to
model-free RL. However, we still give a brief description of all these algorithms here, as they
will be relevant through out this thesis.

Policy iteration [Sutton and Barto 1998]: Policy iteration is a dynamic programming ap-
proach that learns an optimal policy 7* for a given finite MDP by iteratively improving a
candidate policy until it converges to the optimal one (Algorithm 1). It alternates between two
steps: (i) Policy evaluation: Evaluate the value function V™ for the current policy 7 by itera-
tively solving the Bellman equation (Equation 2.2) until convergence. (ii) Policy improvement:
Improve the policy by greedily selecting actions that maximise the expected cumulative reward
based on the current value function.



Algorithm 1: Policy iteration
Input :(S, A P R,~)
Initialise : Policy 7(s) = a € A, State-value function V'(s) = 0, value iteration error A = 1
/* Policy evaluation */
while A > 0 do
A+0 /* Policy improvement */
for s € S do for s € S do
V<> P(s']s,m(s))(R(s,7(s),s) 77(5)<—m3x Y P(S'|s,a)(R(s,a,s)
V() +V(s"))
A = max{A, |V (s) —v'|}
V(s) <

Value iteration [Sutton and Barto 1998]: Value iteration learns the optimal value function
V* (or Q) for a given finite MDP by iteratively improving the value function until it converges
to the optimal one. It directly computes the optimal value function by iteratively applying the
Bellman optimality equation (Equation 2.5) until it converges (Algorithm 2).

Algorithm 2: Value iteration
Input :(S, A, P,R,~)
Initialise : Action-value function (s, a) = 0, value iteration error A = 1
while A > 0 do
A+0
for s € S do
fora € Ado
q < > P(s|s,a)(R(s,a,s") +vymaxy Q(s',a"))

A = max{A, |Q(s,a) — ¢'|}
Q(s,a) + ¢

Q-learning [Watkins 1989]: Q-learning computes the optimal action-value function Q* for a
finite MDP directly from observed transitions without requiring a model of the environment.
Here, the agent acts in the environment using random or greedy actions with some probability,
and simultaneously uses that experience to update its action-values (Algorithm 3).

2.2 Logical composition

In the previous section, we described the regular RL setting which only pertains to an agent trying
to solve a single task. However, as discussed in Chapter 1, we want the agent to be instructable
such that it can solve multiple tasks specified as compositions of other tasks. Similarly, we want
the agent to be flexible by composing its skills—defined as policies or value functions—to solve
said task compositions. How should we then define the RL problem for such agents?

Since language is a natural way of specifying such compositions, and logics is foundational
to all such languages, we seek to formalise the logical composition of tasks and skills. To
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Algorithm 3: Q-learning

Input : Discount factor ~, learning rate «, exploration rate e
Initialise : Action-value function Q(s,a) = 0
foreach episode do
Observe initial state s € S
while episode is not done do
argmax Q(s,a) w.p.1l—¢
a +— acA
arandom action Ww.p. €

Execute a, observe reward r and next state s’

Q(s,a) & <7“ + max Q¢ a’)) — Q(s,a)

5+ s

precisely define these, we can leverage the mathematical framework of lattice theory, since it is
the structure that abstracts the rules of propositional logic and set theory.

2.2.1 Lattice theory

Lattice theory extends the study of Boolean algebras and can be approached from either an order
theory or abstract algebra perspective [Gritzer 2002]. In the order theoretic view, fundamental
concepts include least upper bounds and greatest lower bounds, corresponding to the algebraic
operations of join (disjunction) and meet (conjunction). As our emphasis lies on conjunction,
disjunction, and negation operators, we primarily adopt the algebraic interpretation, aiming
towards constructing a Boolean algebra. Nevertheless, we also incorporate the order theoretic
perspective when appropriate.

In order theory, a lattice is a partial order (£, <) in which every pair of elements a, b € £ has a
least upper bound (their supremum) and a greatest lower bound (their infimum) [Gritzer 2011].
The equivalent algebraic definition is as follows:

Definition 2.2. A Lattice algebra (L,V, N) is a set L equipped with the binary operators \ and
A which satisfies the following lattice axioms for a,b, c in L:

(i) Idempotence: a \a = aV a = a.

(ii) Commutativity: a Nb=0bANaandaNVb=">0V a.
(iii) Associativity: a N\ (bAc) = (aANb)ANcanda AN (bV )= (aVb)Vec.
(iv) Absorption: a A (aV b) =aV (a Ab) = a.
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A lattice order (£, <) induces a lattice algebra (£, V,A) with V and A given by a V b =
sup{a, b} and a A b == inf{a, b}. We can then call a set B C L a basis of L if it is the smallest
set that can generate all elements of £ by applying the logical operators of £.!

While the lattice algebra defines conjunction and disjunction, it says nothing of the negation
operator. The De Morgan algebra, on the other hand, provides an intuitive notion of negation.

Definition 2.3. A De Morgan algebra (L,V, N\, —) is a set L equipped with the binary operators
V and A, and the unary operator — (involution, negation), which satisfies the following De
Morgan algebra axioms for a,b, cin L:

(i) All the lattice axioms.

(ii) Distributivity: a N (bV ¢) = (aAb)V (aAc)andaV (bAc)=(aVb)A(aVc).
(iii) Identity: there exists 0,1 in L suchthatONa =0, 0Va=a, 1 Na=a,1Va=1.
(iv) De Morgan involution: =—a = a and —(a V b) = —a A —b.

In other words, a De Morgan algebra is a bounded distributive lattice equipped with a De Morgan
involution (a negation operator that satisfies the De Morgan laws).

Finally, notice that the De Morgan involution does not necessarily satisfy the law of the excluded
middle (a V —~a = 1) and the law of non-contradiction (a A —a = 0), which are neccessary to
have the familiar semantics of propositional logic and set theory [Gritzer 2011]. A Boolean
algebra gives us those semantics by enforcing said laws:

Definition 2.4. A Boolean algebra (L,V, N\, ) is a set L equipped with the binary operators
V (disjunction) and N (conjunction), and the unary operator — (negation), which satisfies the
following Boolean algebra axioms for a,b, cin L:

(i) All the De Morgan algebra axioms.

(ii) Complements: Ya € L, there exists ~a = a' € L such thata Na’ =0anda V a' = 1.

2.2.2 Task composition

By leveraging the lattice theory framework, Nangue Tasse ef al. [2020b] formalise the disjunction,
conjunction, and negation of tasks as operators acting on a set of tasks in lattice structures.
They consider a family of related tasks M with an absorbing set G C S and restricted by the
following assumption:

Assumption 2.1 (Nangue Tasse et al. [2020b]). Given a set of tasks M in an environment
(S, A, P,~) with absorbing states G C S,

(i) the transition dynamics P are deterministic, and

"For simplicity, we adopt the convention of Griitzer [2011] of referring to an algebraic structure (e.g., the lattice
(L,V,N)) by the set on which it is defined (L), when the distinction is clear given the context.
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(ii) the reward functions differ between tasks only in the boundary set G. That is, for all
My, My € M with reward functions vy, and 1y, respectively, we have that 1y, (s, a) =
T, (S,a) = Rsq € Rforalls € S\ Ganda € A

The logic operators over tasks are then defined as follows:
Definition 2.5. Let M be a set of tasks with bounds M nr, Msyp € M such that,
Rgyp(s,a) = max ra(s,a) R, np(s,a) = ]\141161/1\14 ra(s,a)

Define the —,V, and A operators over M as

=(M) = (S, A, P, R_p1,7), where R_p(s,a) = (Rpgyp(8,a) + Raaynp(s,a)) — Ru(s,a)
V (M, Ms) = (S, A, P, Ryryuns,, Y), where Rypva, (s, a) = max{ryg, (s,a),ru,(s,a)}

N(My, My) = (S, A, P, Rypansy, V), where Ry, (s, a) = min{ryg (s, a), 7y, (s, a)}

Nangue Tasse et al. [2020b] then show that these logical operators over tasks form a lattice,
and under increasing restrictions on the reward functions they form a De Morgan and finally
a Boolean algebra. Precisely, to obtain a Boolean algebra, they assume that for all tasks in a
bounded set of tasks M, the set of possible terminal rewards consists of only two values:

Assumption 2.2 (Nangue Tasse et al. [2020b]). Consider a set of tasks M in an environment
(S, A, P,v) with absorbing states G C S. For all (g,a) in G x A, we have that R(g,a) €
{Rumin, Ryax} € Rwith Ryiy < Ryax.

While restrictive, the Boolean algebra formalism allows for goal-reaching tasks with sparse
rewards to be specified, and also gives us a notion of basis tasks—a minimal set of tasks that can
be composed to specify the largest number of composite tasks.

Figure 2.2: The layout of the Four Rooms domain. The circles indicate goals the agent must reach.
We refer to the goals as top-left, top-right, bottom-left, and bottom-right.

Example 2.1. Consider the Four Rooms domain [Sutton et al. 1999], where an agent must
navigate a gridworld to particular rooms. The agent can move in any of the four cardinal
directions at each timestep, but colliding with a wall leaves the agent in the same location. There
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Goals Mp Mg Goals My My,

top-left 0 0 bottom-right 0 0
top-right 0 1 bottom-left 0 1
bottom-left 1 0 top-right 1 0
bottom-right 1 1 top-left 1 1

(a) Goals labelled by the well order < (b) Goals labelled by the well order < given
given by: top-left < top-right < by: bottom-right < bottom-left <
bottom-left <bottom-right. top-right < top-left.

Table 2.1: Basis tasks induced by various well orders on G. Each column represents a basis
task, where 0 or 1 for goal g on task M means respectively reward of Ry(g,a) = Ry or
Ry(g,a) = Ruax Va € A. For example, M, is the basis task requiring the agent to navigate to
the bottom-left or bottom-right goals. Note that the goal rewards are sufficient to specify the
tasks since the internal rewards are the same across all tasks.

Y

(a) My, (b) M () M, vV Mr (d) Mg A Mr (e) =My, () Mg, ¥ Mr

Figure 2.3: Task composition of basis tasks in the Four Rooms domain where Y represents
exclusive disjunction. (a—b) Rewards for the basis tasks. (c—f) Rewards for the composed tasks.
The optimal policies (bottom row arrows) and their corresponding value functions (bottom row
heat maps) are obtained using Q-learning.

is a fifth action for “done” that the agent chooses to achieve goals G (centre of a room). A goal
position only becomes terminal if the agent chooses the done action in it. The non-terminals
rewards are Ry;y = —0.1 and the goal rewards (rewards on the terminal set) are binary
(Ryiv = —0.1 or Ryax = 2). The discount factor used is v = 1. Figure 2.2 illustrates the layout
of the environment and the goals the agent must reach.

We can select a minimal set of generator tasks (basis tasks) by assigning each goal a binary
number, and then using the columns of the table to select the tasks. Since the set of achievable
goals (the terminal set) is finite, we this assignment can be done using a Boolean table. We first
assign labels to the individual goals by defining a well order over the set G. Since there are
four goals, the number of basis tasks induced by this well order is [|log, G|| = 2. Table 2.1
illustrates how different well orders on G leads to different choices of basis tasks.
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Well Order 3|2
on 4 goal states 1|0
0 1 \ 2 3 L
M, 01 0 1 _'!'_
My 00 1 1 /\
T 1 1 1
Mywr 00 0 0 BEICE Sior ETEES i1t
M,AMy 00 0 1 _I_ _|_ _I_ _I_
M, AMy 0 01 0 A
My 0 01 1
MA=M7 {0110 0 F E : ;
M, o1 o]
M,V My 01 10 =4 4 - - A
M,V My 01 1 1 ‘ ) g
M,V My 10 0 0
Moy =My (10 0] ] PR B B
M, 1010 - H ; 1
MovM, |1 0l1 1 + -I- -I- -I_
~My 110 0 W
M,V —My 11 b 1 e
Mov=My |11 10 ——
Mgyp 1 1 1 1 'I'

(a) Boolean table of basis and (b) Hasse diagram of the Boolean task algebra.
composed tasks.

Figure 2.4: Boolean table and Hasse diagram for the Four Rooms domain. (a) A well order on G
that labels the goals, the induced basis tasks, the logical expressions for all 16 compositions of
the basis tasks, and their Boolean values and rewards. (b) The Boolean task algebra showing the
rewards for all 16 tasks in M, together with the Boolean values and logical expressions that
generate them from the basis tasks.

Consider, for example, the well order on G shown in Table 2.1b. The basis tasks induced are M,
and My, in which an agent must navigate to the two left rooms and the two top rooms respec-
tively. Figure 2.3 shows the rewards and optimal policies of the tasks specified by some of their
logical compositions. Figure 2.4 shows the Boolean table and Hasse diagram for all 22" = 16
tasks generated by the k = 2 basis tasks, which spans the whole set of tasks, | M| = 2*. A Hasse
diagram illustrates a lattice M by drawing an edge between My € M and My € M if they
are comparable, and M, is drawn below M if My < M, [Grdtzer 2011]. Hence, My, N\ My is
connected to My, and My directly below them because it is their greatest lower bound. Similarly,
My, vV My is connected to My, and My directly above them because it is their least upper bound.
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2.2.3 Extended value functions

For an agent to be able to solve new tasks optimally in an environment without extra learning, it
needs to have gained sufficient information from its experience when learning to solve previous
tasks. Its objective during learning hence should not just be how to optimally solve the current
task, but how to gain as much knowledge as possible from its experience while doing so.
Nangue Tasse et al. [2020b] recently introduced a new type of value function called extended
value functions (EVFs) that captures this idea. They then showed that the rich knowledge it
encodes is provably sufficient to solve the logical combination of tasks without further learning.
To achieve these, they further restrict the task space with the following assumption:

Assumption 2.3 (Nangue Tasse et al. [2020b]). Consider a set of tasks M. M only contains
deterministic shortest path tasks (v = 1) as in van Niekerk et al. [2019]; Nangue Tasse et al.
[2020a], or it only contains discounted tasks (v € [0, 1)) with zero non-terminal rewards and
non-negative terminal rewards.

An EVF is a goal-oriented value function (Q) learned from a single task but that encodes more
information about the solved task than a normal value function (QQ). Let G C S be the set of
goals in an environment. Nangue Tasse et al. [2020b] extend the standard rewards and value
functions used by an agent to define goal-oriented versions as follows:

Definition 2.6. The extended reward function R : § X G x A — R is given by the mapping
R ] ds e
(5,9, a) — MIN zfg;«és.an s€g 0.8)
r(s,a) otherwise,

where Ry < min{ Ryuv, (Ryiv — Ruax) D}, and D is the diameter of the MDP [Jaksch et al.
2010].

Definition 2.7. The extended action-value function Q™ : S x G x A — R is given by the
mapping
(5,9.a) = R(s,g,a) +7Y_ P(s']s,a)V7(s', g), (2.9)

s'eS

where V7™ (s, g) = Ez D72, R(s4, g, a;)] is the extended state-value function and 7 : S X G x
A — [0, 1] is the extended policy.

By penalising the agent for achieving goals different from those it wanted to reach (R if g #
s and s € G), the extended reward function has the effect of driving the agent to learn how to
separately achieve all desirable goals. Importantly, the standard reward and value functions
can be recovered from their extended versions by simply maximising over goals. As such, the
agent can also recover the task policy by maximising over both goals and actions: 7*(s) €

arg max,. 4, max,eg Q*(s, g, a).

Notice how EVFs are similar to other goal-oriented value functions [Schaul ez al. 2015; Kaelbling
1993], except that they use task-dependent reward functions. This leads to agents that learn to
achieve any goal that is achievable, and also the value of achieving those goals for the task.

Example 2.2. Consider the Four Rooms domain in Example 2.1. Figure 2.5 shows the EVF of
an agent trained to solve the left task. Here the agent is required to navigate to the center of the
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(a) The EVE. Each plot shows the value of all (b) The value function. This is obtained from
internal states for each goal. For example, the the EVF by maximising over goals. The arrows
top-left plot shows the learned value of each represent the greedy action for each state, and
position with respect to the top-left goal. the black dot represents the done action.

Figure 2.5: Showing the extended value function learned for the left task in the Four Rooms
domain and the normal value function obtained by maximising over goals. The color map
represents the values from lowest (blue) to highest (red).

left rooms. Observe in Figure 2.5a how the learned EVF does indeed encode how to achieve
all the goals in the environment. Figure 2.5b shows how maximising over the goals on the EVF
recovers the normal value function.

2.2.4 Skill composition

Finally, given the Boolean algebra over tasks satisfying both Assumptions 2.2 and 2.3, and
their corresponding skills defined as EVFs, Nangue Tasse et al. [2020b] similarly defines a
Boolean algebra over skills. They then show that they are homomorphic, meaning that any
logical composition of tasks can be solved zero-shot (meaning without further learning) by
similarly composing the extended value functions. For example, say we have learned the left
task, L, and the top task, 7', in the Four Rooms domain shown in Figure 2.5(a). Then we can
provably solve their union, intersection, and negation respectively as follows:

szT(Saga (Z) = maX{Qz(Sagva)v Q;«(S,g,d)}
QE/\T(Svgva) = min{Q*L(S7g7a)7 Q;(Sagaa’)}

QiL(Svgva) = (QZ’UP(Sagva) + Q?NF(Sagva)) - QZ(Sagaa)

where Q¢ p is the EVF for the maximum task where all goals are desirable. Similarly Q7,5 is
EVF for the minimum task where all goals are undesirable. With this we also get for free the
solution to any combination of unions, intersections, and negations of the left and top tasks. So
we can solve more complex compositions like exclusive or where the agent needs to go to the
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left or top rooms excluding the top-left room. We get the skill to immediately solve it by simply
composing the basis skills according to the Boolean expression for the exclusive or,

QEYT(Sa 9, CL) = QZKLVT)/\ﬂ(L/\T)(Sv 9, CL)
= min{max{QJ(s, g, a), Q7(s, g,a)},
[(QEUP(Sa 9, a’) + Q;NF(& 9, a)) - min{Qz(Sv 9, CL), Q;(Sv 9, a)H}

These are demonstrated in Figure 2.6.

a "8la3 B2 a2 RElST EAIE 2[R 22
E3ad E!HZI g

=y i TR ie= ‘1] [LIEEEE] W Seeeli=="11]

ﬁi il

Bl

(@) Q7 (b) QF ©QLvQr WQLAQr  (0)~Qf 0 QLY Qr

Figure 2.6: An example of Boolean algebraic composition using the learned extended value
functions of the left and top tasks. Arrows represent the optimal action in a given state. (a—b)
The learned optimal extended value functions for the basis tasks. (c) Zero-shot disjunctive
composition. (d) Zero-shot conjunctive composition. (e) Zero-shot negation. (f) Combining
operators to model exclusive-or composition.

Yy

Finally, the notion of basis tasks means that if we learn /K of them, it is guaranteed that we can
solve 22" tasks. This gives us a super-exponential explosion of skills. Figure 2.7 compares it
with previous work that could only achieve zero-shot disjunction solving just 2 — 1 tasks. For
example, with the Boolean algebra after learning 6 basis tasks we can solve about a quintillion
tasks, while with only disjunction we can solve just 64 tasks.

2.3 Temporal logic composition

In the previous section, we have described how the logical composition of tasks and their
corresponding skills can be obtained through the task algebra framework of Nangue Tasse et al.
[2020b]. The natural follow-up question is how to obtain the temporal logic compositions of
tasks and skills, to understand and solve tasks specified using language. Formal languages and
automata theory provide a formal way of specifying such tasks.

2.3.1 Formal languages and automata theory

Formal Languages is a branch of computer science that deals with sets of strings defined over a
finite alphabet—a set of propositional symbols—with well-defined rules. Formally, a formal
language can be defined by a grammar—the syntactic rules of the language—which can be
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Number of learned tasks Number of terminal states
(a) Number of tasks that can be solved as  (b) Number of basis tasks that need to be
a function of the number of learned basis solved to span all tasks as a function of
tasks. Results are plotted on a log-scale. =~ number of terminal states.

Figure 2.7: Comparison of Boolean composition to the disjunctive composition of van Niekerk
et al. [2019]. (a) The extended value functions allow us to solve exponentially more tasks than
the disjunctive approach without further learning. (b) With extended value functions the number
of basis tasks required to solve all tasks is logarithmic in the number of achievable goals.

thought of as a subset of the set of all possible strings over a given alphabet [Hopcroft et al.
2001]. For instance, programming languages like C++ or Python, and regular expressions are all
examples of formal languages. This theory has applications in various fields, such as linguistics,
Al and recently RL [Littman et al. 2017; Camacho et al. 2019; Vaezipoor et al. 2021].

Similarly, automata theory is a branch of computer science that deals with abstract machines
that process input strings to produce outputs following predefined rules. More formally, a state
machine—also called an automaton—is an abstract machine that operates on input symbols
from a given alphabet [Hopcroft er al. 2001]. It transitions between different states based on
these inputs according to predefined rules. State machines are used to recognize patterns or
sequences within strings and can be classified based on their power or expressiveness. One such
classification that is especially popular in Al is the Chomsky Hierarchy [Chomsky 1956].

The Chomsky Hierarchy categorizes formal languages and automata into four types based on
their generative power, with each type being more expressive than the previous one:

(i) Type 0 - Recursively Enumerable Languages (Turing Machines): These languages can
be recognized by Turing machines, which are the most powerful computational model.
They include all possible formal languages.

(i) Type 1 - Context-Sensitive Languages (Linear Bounded Automata): Context-sensitive
grammars generate these languages. They are more restricted than recursively enumerable
languages and can be recognized by linear bounded automata, which have limited memory.

(iii) Type 2 - Context-Free Languages (Pushdown Automata): Context-free grammars
generate these languages. They are recognized by pushdown automata, which have a
stack-based memory structure. Context-free languages are widely used in programming
languages and syntax analysis.
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(iv) Type 3 - Regular Languages (Finite State Machine): Regular grammars generate these
languages. They are recognized by finite state machines, which have a finite number of
states. Regular languages are simple and commonly used in pattern matching, lexical
analysis, and string manipulation.

While this classification is not exhaustive of all types of languages, it highlights how they are
all defined by grammars, which in turn are all build upon propositional logics and can all be
recognised by state machines. For example, Linear Temporal Logic (LTL) [Pnueli 1977]—and
its regular fragments like co-safe LTL [Kupferman and Vardi 2001]—is a particularly popular
type of formal language in RL [Konidaris and Barto 2009; Camacho et al. 2019; Liu et al. 2022].
LTL is used to specify a temporal ordering over events defined by propositional symbols P—in
RL, these represent high-level goals in the environment. Formally,

Definition 2.8 (LTL). An LTL expression is defined using the following recursive syntax:
p=ploplorVealpi Apa| Xo | Go| piUps | p1F s, where p € P; = (not), V (or), A\
(and) are the usual Boolean operators; X (neXt), G (Globally or always), U (Until), F (Finally
or eventually) are the LTL temporal operators; and ¢, o1, o are any valid LTL expression.

Consider the office environment for example (Figure 1.1). In this environment, an agent (rep-
resented by the little robot head) can move to adjacent cells in any of the cardinal directions
(| A| = 4) and observe its (x, %) position (|S| = 120). Cells marked ®, 5, and # respectively
represent the coffee, mail, and office locations. Those marked *% indicate decorations that are
broken if the agent collides with them, and A-D indicate the corner rooms. Tasks in this envi-
ronment can be specified over 10 propositions: P = {A, B,C, D, *, s <, & X &}, where
the first 8 propositions are true when the agent is at their respective locations, B is true when
the agent is at X< and there is mail to be collected, and # is true when the agent is at # and there
is someone in the office. Hence, the task deliver coffee to the office without breaking decorations
can be specified in LTL as (F (“!'> NX (F 'ﬁ'))) A (G —*). Similarly, the long example given
at the beginning of Chapter 1 has LTL specification:

(F(RAX (FO#AX (AU (- ARAX (F (8 AX (80U (-4 ARAX
(FANX(F(BAX(F(CAX(E(DAXEANNNI) NG =%)

While formal languages like LTL are a natural way to specify tasks, an important question is
what rewards they correspond to, since RL agents only understand the task to be solved as the
maximisation of rewards. A popular approach to address is question is reward machines.

2.3.2 Reward machines

One difficulty with the standard MDP formulation is that the agent is often required to solve a
complex long-horizon task using only a scalar reward signal as feedback from which to learn. To
overcome this, a common approach is to use reward machines (RM) [Icarte et al. 2018], which
provide structured feedback to the agent in the form of a state machine. In principle, since any
formal language can be converted to a state machine, each can also be converted to a reward
machine. For example, Camacho et al. [2019] show that temporal logic tasks specified using
regular languages, such as regular fragments of LTL (like safe, co-safe, and finite trace LTL),
can be converted to finite state machines (FSM) with rewards of 1 for accepting transitions and
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Figure 2.8: Illustration of (a) the reward machine for the task deliver coffee to the office without
breaking decorations, given by the LTL specification (F (% A X (F #))) A (G —%); (b) the
office gridworld where the blue circle represents the agent. The reward machine is obtained by
converting the LTL expression into an FSM using Spot [Duret-Lutz et al. 2016], and then giving
areward of 1 for accepting transitions and 0 otherwise. Nodes labeled ¢ represent terminal states.

0 otherwise.> These RMs encode the task to be solved using a set of propositional symbols P
that represent high-level environment features as follows:

Definition 2.9 (RM). Given a set of environment states S and actions A, a reward machine
is a tuple Rsq = (U, ug, 0y, O,) where (i) U is a finite set of states; (ii) uyg € U is the initial
state; (iii) 8, : U x 2F — U is the state-transition function; and (iv) 6, : U x 2F — {0,1} is
the state-reward function.’

Figure 2.8 shows an example. To incorporate RMs into the RL framework, the agent must be able
to determine a correspondence between abstract RM propositions and states in the environment.
To achieve this, the agent is equipped with a labelling function L : S — 27 that assigns truth
values to each state the agent visits in its environment. The agent’s aim now is to learn a policy
m: S xU — A that maximises the rewards from an RM while acting in an environment
(S, A, P,v,P, L). However, the rewards from the reward machine are not necessarily Markov
with respect to the environment. Icarte et al. [2022] shows that a product MDP (Definition 2.10
below) between the environment and a reward machine guarantees that the rewards are Markov
such that the policy can be learned with standard algorithms such as ()-learning. This is because
the product MDP uses the cross-product to consolidate how actions in the environment result in
simultaneous transitions in the environment and state machine. Thus, product MDPs take the

2Accepting transitions are those at which the high-level task—described, for example, by LTL—is satisfied.
Additionally, this type of state machine that defines outputs for each machine transition is called a Mealy machine.
When the outputs are instead defined per machine state, it is called a Moore machine. For simplicity, we will keep
referring to them more generally as FSMs.

3RMs are more general, but for clarity, we focus on the subset that is obtained from regular languages.
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form of standard, learnable MDPs. In the rest of this work, we will refer to these product MDPs
as rasks.

Definition 2.10 (Tasks). Let (S, A, P,~y, P, L) represent the environment and (U, ug, 4y, 6,) be
an RM representing the task rewards. Then a task is a product MDP M+ = (S, A, Pr, Rt,7)
between the environment and the RM, where S = S x U, Ry ((s,u),a, (s',u)) = ,(u,l),
Pr((s,u),a) = (s',u'), s ~ P(:|s,a), v = 0,(u,l"), and I" = L(s").

2.4 Conclusion

In this chapter, we have explored the foundational areas of interest to us for designing general-
purpose agents capable of solving diverse tasks in their environment. Beginning with rein-
forcement learning (RL), we discussed how agents make sequential decisions to maximise
the cumulative sum of rewards for given tasks in their environment. We then delved into the
logical composition framework of Nangue Tasse et al. [2020b], which employs lattice theory to
formalise the logical combination of tasks and skills—defined by a new type of goal-oriented
value function that enables zero-shot composition. Importantly, we showed the main restrictions
that Nangue Tasse et al. [2020b] imposes on the task space, which limits the instructability
and flexibility of agents. To address these limitations, we will extend their logical composition
framework to more general task spaces (Part I) and skills (Part II) Finally, we examined temporal
logic composition, which utilises formal languages and reward machines to specify complex
temporal tasks. In part I1I, we will show how logical composition can be leveraged to solve such
tasks safely, and also solve natural language specified tasks.
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Part I

Instructable Agents ga-

In Chapter 3, we formally define the logical composition of tasks and
explore the semantic meaning of such compositions. Given that we are now
able to specify tasks as a composition of other tasks, Chapter 4 ensures that

the rewards of tasks in general minimise the probability of leading to

optimal but undesired behaviours.
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Chapter 3

Logical composition of tasks

Before we can construct agents capable of solving new compositional tasks, we must formally
define these composite tasks. Since reinforcement learning models tasks as MDPs, we require
principled ways of composing these MDPs to produce new MDPs that model a desired task
specification. Similarly to Nangue Tasse et al. [2020b], this is done by leveraging the structure
of lattice algebras since, as outlined in Section 2.2.1, they abstract the notion of disjunction,
conjunction, and negation. Hence, we make the following main contributions in this chapter:

(i) Conjunction and disjunction of tasks (Section 3.1): Since Boolean algebra is the
most restrictive structure, we will first start with a general lattice defined over general
tasks—relaxing Assumption 2.1. This extends the conjunction and disjunction operators
of Nangue Tasse et al. [2020b] to arbitrary tasks in potentially stochastic environments.

(i) Negation of tasks (Section 3.2): We will then increasingly constrain the task space with
necessary assumptions on the road to a Boolean algebra. In particular, we will show
that by simply bounding the task space, we can obtain a De Morgan algebra over tasks.
This extends the negation operator of Nangue Tasse et al. [2020b] to tasks with arbitrary
bounded rewards in potentially stochastic environments.

(iii) Propositional logics over tasks (Section 3.3): Interestingly, to achieve this, we show
that task rewards do not have to be restricted by Assumption 2.2—for example, reward
of 1 at desirable goal states and zero rewards everywhere else. Instead, it is sufficient for
the rewards for each transition to be the same as that of the task bounds—which can be
arbitrary. This enables different semantics of logics from the choice of tasks bounds.

During this process, we will use the following running example to illustrate some of the different
types of semantics of task compositions that result from the different lattice structures:

Example 3.1 (Bin-packing domain). Consider an environment where an agent needs to manip-
ulate a robotic arm to pack (or unpack) objects into (from) a green bin (Figure 3.1). There are
10 red objects and 10 blue objects in the domain, resulting in 11 X 11 states where each state
s = (r,b) corresponds to the number of red (r) and blue (b) objects in the bin.

The agent has actions to command the robotic arm to put a red object into the bin (— ), remove
a red object from the bin (<), put a blue object into the bin (1), and remove a blue object from
the bin (].). If there are no red or blue objects to put into the bin or remove for the respective
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actions, the robot arm does nothing. The agent also has a fifth action (e) for “done” that it
chooses to terminate; a state only becomes terminal if the agent chooses the done action in it.

=
o

Number of blue objects in the bin
O N W H 01O N 0 O

012345678910
Number of red objects in the bin

(a) Bin packing domain (b) Gridworld representation

Figure 3.1: Gridworld representation of the simple bin packing domain.

x>
v’

(c) | action

g.

(e) e action

Figure 3.2: Sample robot arm trajectories for each action in the bin packing domain.
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(A R (b) Q* (c) Trajectory starting from state (3, 5)

Figure 3.3: Terminal rewards (heat map in (a)), optimal policy (arrows in (b)) and value functions
(heat map in (b)), and resulting robot arm trajectories. The optimal policies and value functions
are obtained using Q-learning.

Figure 3.1b illustrates the gridworld representation of this domain, and Figure 3.2 shows the
effect of each action in it.

Consider a task in which the robot must pack all the red objects into the bin. The non-terminal
rewards (rewards for all non-terminal transitions) are Ry;y = 0 and the terminal rewards range
from Ryyy = 0 to Ryax = 1. The discount factor used is v = 0.95. That is, an agent receives
a reward of Ryy as it acts in the environment but when it chooses the done action at any state,
it receives a reward between Ry and Rysx depending on how close it is to the desired states.
Figure 3.3 shows the terminal rewards, optimal policy, and trajectory of the robot packing red
objects into the bin.

3.1 Task lattice

Having described how a lattice algebra abstracts the usual concept of disjunction and conjunction,
we now formalise the meaning of disjunction and conjunction of tasks. Consider the set of all
tasks in an environment:

M]R = {M == (S;Ay P7 RM77)|RM(S’CL’ S/) € R}

Since we have constrained ourselves to the model-free setting, we require all our definitions to
be usable even when the only information available to the agent from the MDP is its current
state s, the next state s’ ~ P(:|s,a) and reward R(s, a, s’) after taking an action a. Given that
tasks differ only in their reward functions (Definition 2.1), we can achieve this by first defining
the partial order over tasks using pointwise < (the usual < relation on R) over the rewards. The
resulting partially ordered set of tasks is formally stated as follows:

Proposition 3.1. Let My, My € Mg be tasks with reward functions Ry, and Ry, respectively.
Then (Mg, <) is a partially ordered set with the relation < given by

My < My if Ry, (s,a,8") < Ry, (s, a,8) forall (s,a,8") € S x A X S.
Proof. Follows from the usual < relation on R. O
Since the reward functions are real-valued, every pair of rewards has a least upper bound (sup)
and a greatest lower bound (inf). The resulting real functions after pointwise inf and sup are then

clearly still valid task reward functions. Hence the partially-ordered set of tasks (Mg, <) has
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a least upper bound sup{ My, M>} € Mp and a greatest lower bound inf{M;, M>} € My for
any pair of task M, My € Mg (since they only differ on their rewards). The lattice (Mg, V, A)
induced by this partial order trivially follows with the binary operators V and A given by
My vV My = sup{ My, My} € Mg and My A My = inf{M;, My} € Mg. We define these
operators formally as follows:

Definition 3.1. The join vV : Mg X Mg — Mg and meet \ : Mg x Mgr — Mg operators
over tasks are given by

V(My, M) = (S, A, P, Rypovas,, Y), where Ryyag, - S X A xS - R
() = Sup{RJ\/h(')v RMQ()}?

N My, My) = (S, A, P, Rypang, ), where Rypan, - S X AXxS — R
() = inf{ Ry, (-), B, (-) }-

In fact, (Mg, V, A) forms a distributive lattice since inf and sup with the usual < in R is
distributive:

Proposition 3.2. (Mg, V, A) is a distributive lattice.
Proof. Follows from the properties of inf and sup and their distributivity. [

This allows us to jointly apply disjunction and conjuction operators to sets of tasks. Given a
non-empty finite set O of lower bounded subsets of tasks ' C Mg, the task lattice (Mg, V, A)
gives us the principled way of specifying the disjunction of conjunctions:

\/ (/\ N> = (S, A, P,RXJAV,W), where R, , (s, a,s') = sup (&reljvaN(s,a,s’O .

NeO \NeN ON Neo

Similarly, given a non-empty finite set O of upper bounded subsets of tasks N C Mk, the
conjunction of disjunctions is given by,

/\ (\/ N) =(S,A,P, Réx,v), where R, : (s,a,s") = /\1/2% (sup Rn(s,a, s’)) .

NeO \NeN oN NeN

Example 3.2. Consider the bin packing domain introduced in Example 3.1. Further consider
the specification of two tasks, B and B, in which the robot must pack all the red and blue objects
into the bin respectively. Figure 3.4 shows the terminal rewards (all non-terminal rewards are 0),
optimal policy and value function of the task specified by their disjunction B\ B and conjunction
B A\ B We can observe how the sup and inf of task rewards indeed result in composite task
rewards with the correct semantics for the disjunctive and conjunctive tasks respectively. To
learn the corresponding optimal policies and value functions, we use Q-learning where the
transition rewards are obtained by doing sup{Rg(s,a, s'), Rg(s, a, s')} for their disjunction
and inf{ Rg(s,a, s"), Rm(s,a, s")} for their conjunction.

Finally, we can also use a Hasse diagram to visualise the task sub-lattice generated by all
combinations of disjunction and conjunction of B and B (Figure 3.5).
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(a) Pack all red objects into the bin: l

N7 o P Y A

i

(b) Pack all blue objects into the bin: l

Y NP o , v -
« SN Iy -
7 ~ \' ] S\ A -
i ‘_e'_'.ff e
e § : s
€ (44 gdd €

(c) Pack all red or blue objects into the bin: ll vV

VY 7 P ) )/

(d) Pack all red and blue objects into the bin: ll A N

Figure 3.4: Terminal rewards (left column heat maps), optimal value functions (middle column
heat maps), optimal policies (middle column arrows), and sample robot trajectories (right column
images) for the disjunction (c) and conjunction (d) of tasks (a-b) in the bin packing domain. The
optimal policies and value functions are obtained using Q-learning.

O
3 O
4

Figure 3.5: Hasse diagram of the task sub-lattice with basis {H, H}.
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3.2 De Morgan task algebra

Having formalised the meaning of task disjunction and conjunction, we next turn our attention
to the negation of tasks. As discussed in Section 2.2.1, the De Morgan algebra allows us to
define this operator by adding the minimal required properties that encapsulate the desired
semantics of a negation. In particular, we only need the set of tasks to be bounded by some tasks

Minp, Msup € Mg:

M[MINF Msup] = {M = (S7A7 P7 RM?V) | RM(S,CL, sl) S [R]NF(S,CL, 3/),RSUP(S,CL, S/)]}

where R;yr and Rgyp are the reward functions of My and Mgy p respectively. We can now
define the negation of a task as follows:

Definition 3.2. Define the negation operator = : M,y Msup] = MiMine Msup] G
(M) = (S, A,P,R_p,7), where R_py: Sx AxS — R

(-) = (Rsup() + Rinrp(+)) — Ru().
The above definition captures the intuition behind negation. For example, if an agent takes an
action at a given state and receives the smallest reward for the resulting transition, then the agent
acting in the opposite task should receive the highest reward for that same transition. Note how

for M € Mimnp Moo (S, A, PRy, y) € M because Ry (s, a, s') is also bounded by
[Rinp(s,a,8"), Rsup(s,a,s’)]. Hence, = is closed in Maq, .y, Moy p)-

Finally, we formalise the interaction of the negation of tasks with the conjunction and disjunction
of tasks as follows:

Proposition 3.3. (M, Mour]s Vo A, 7 Msup, Minrp) is a De Morgan algebra.

Proof. Let My, My € M,y Mgyp)- We show that =, V, A satisfy the De Morgan algebra
axioms.

(i)—(v): These follow from the properties of inf and sup.

(vi): This follows from the bounds Mgy p, Minr € M,y Mgyp) Which are guaranteed
to exist by definition.

(vii): The first condition easily follows from the definition of —. For the second condition, let
R (am,va,) be the reward function for —(A/; VV My). Then for all (s,a,s’) in S x A x S,

R (s a,8") = (Rsup(s,a,8") + Rinp(s,a,8)) —  sup  Ru(s,a,s)
]\/[E{Ml,MQ}

= (R N+ R ! inf —-R !
( SUP(87a75)+ INF(S,G,S))—F]VIE{I]I\}LMQ} M(S7a78)

= I f R s Uy ! R s Uy ! _R y Wy !
Me{lﬁl’%}( sup(s,a,s") + Rinr(s,a,s)) v(s,a,s)
= Roapa-ni (S, a,8).

Thus _‘(Ml vV Mg) = _\M1 VAN _\MQ.
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We can now specify arbitrary disjunction, conjunction, and negation of tasks.

P IE |
=t
LI

(c) Unpack all objects from the bin: BV Hl := —(H\ H)

(d) Pack only red or only blue objects into the bin: MY M := (HVHE) A ~(HAN)

(e) Pack or unpack all red or blue objects into (from) the bin: (B vV —H) Vv (B VvV —H)

(f) Pack exactly half of the red and blue objects into the bin: (I A -H)A(H A —H)

(g) Do nothing: My

Figure 3.6: Terminal rewards (left column heat maps), optimal value functions (middle column
heat maps), optimal policies (middle column arrows), and sample robot trajectories (right column
images) for the lower bound task My and compositions of tasks (H, M) in the bin packing
domain. Optimal policies and value functions are obtained using Q-learning.

30



Example 3.3. In the bin packing environment, consider the De Morgan lattice bounded by the
tasks where all non-terminal rewards are 0, and all terminal rewards are 0 (L]) for the lower
bound and 1 (W) for the upper bound. Further consider the specification of two tasks, B and
W, in which the robot must pack all the red and blue objects into the bin respectively (the same
ones from Example 3.2). Figure 3.6 shows the rewards, optimal policies, optimal value functions,
and resulting robot trajectories for sample task compositions. We can observe how the negation
of tasks, and its interaction with the disjunction and conjunction of tasks, results in composite
tasks with desired semantics. For example, the negations —M and —M specify the tasks in which
the robot must remove all red objects and all blue objects from the bin respectively. Figure 3.7
shows the De Morgan sub-lattice generated by all combinations of disjunction, conjunction, and
negation of @ and i

Q — learning

REGULAR VALUE FUNCTIONS

(G(EvED) vV (HA(EA-ED)VE(EVED) Y (HA (HA-ED)) ‘—F:-lﬁ

(a) All task compositions of l and H (b) Hasse diagram

Figure 3.7: Tllustration of the De Morgan sub-lattice with basis {l, l}.
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Finally, notice that the task bounds are what define the semantic meaning of the negation
operator, with different task bounds leading to different semantics. For example, when using the
task bounds {[_], B}, the negation of the task in which the robot must pack or unpack all red
objects into (from) the bin (M) is to pack or unpack exactly half of the red objects into (from)
the bin (—lll = [[]). However, when using the task bounds {8, I}, the negation is instead to
pack or unpack all the blue objects into (from) the bin ([l = ().

3.3 Boolean task algebra

While the De Morgan task algebra allows for logical composition of tasks with arbitrary
bounded rewards, it provides no guarantees on certain desired properties. In particular, these task
compositions do not always satisfy the laws of the excluded middle (M; V = M; = Mgsyp), and
of non-contradiction (M; A =M; = M yr). This can clearly be seen in Figure 3.6f, where the
agent needs to pack all red objects into the bin and remove all red objects from the bin and pack
all blue objects into the bin and remove all blue objects from the bin. In this case, the choice of
rewards produces a meaningful task—pack exactly half of the red and blue objects into the bin—
but in general, we may want to guarantee that contradicting task specifications are meaningless.
To achieve this, we need to restrict the set of tasks to those with binary rewards—binary here
means the rewards are either Ry p(s,a,s’) or Rgyp(s,a, s')—which ensures that tasks have a
Boolean nature:

M{MINRMSUP} = {M = (Sa A7 P, Ry, /7) | RM<S7 a, S,) € {RINF(Sa a, Sl)a RSUP(Sa a, Sl)}}

We can now formalise a Boolean logic on the set of tasks.

Proposition 3.4. (Mg, v rMsupts Vi A7 Msup, Minr) is a Boolean algebra.

Proof. Let My, My € M, ypMsup)- We show that =,V A satisfy the Boolean algebra
axioms.

(i)=(vi): These follow from the De Morgan task algebra since M,y Mgyp) Satisfies its
assumptions.

(vii): Let Rys, r-nr, be the reward function for My A =M. Then for all (s,a,s’)in S x Ax S,
Rurn-an (8, a,8") = inf{ Ry, (s,a, s,
(RSUP(Sa a, S,) + RINF(*S; a, S,)) - RMl(Sv a, S,)}
B {R[NF<S,CL, s), if Ry (s,a,8") = Rsup(s,a,s’)

Rinr(s,a,s'), if Ra(s,a,8") = Rinr(s, a, )
= Rinr(s,a,s).
Thus M; A =M; = Mnp, and similarly M; V = M; = Mgyp.
O

Having established a Boolean algebra over tasks, we show that there exists an equivalence
between the task algebra and a power set algebra. We note that the assumption of binary rewards
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establishes a bijection F between the set of tasks M,y Mgy} and the power-set 254X,
given by:

. 9SXAXS
F:2 — M{MINF,MSUP}

H— (S, A, P,Ry,7), where Ry : S x A xS — R

, Rsuyp(s,a,s’), if (s,a,s’) € H
(s,a,s") — .
Rinp(s,a,s), if (s,a,s") & H.

The Boolean task algebra together with the bijection between tasks My, Mgy} and the
power-set 25*4%S gives us the following result:

Proposition 3.5. The Boolean task algebra on Mg,y Mgy p) 1S iSOmorphic to the power set
Boolean algebra on 25*4*%.

Proof. This follows from the bijection F' and the fact that it is clearly homomorphic. ]

Consequently, all results that hold for power set Boolean algebras now also hold for Boolean task
algebras. In particular, consider the Boolean algebra on a set of tasks M with rewards that are
binary and depend only on the current state (such as Example 3.4). Then the respective Boolean
task sub-algebra is isomorphic to the power set algebra on S with the isomorphism F' given by:

F:25 5 M
H— (S, A P, Ry,v), where Ry : S x A xS — R

(5,0, — Rsup(s,a,s'), %fs cH
Rinr(s,a,8), ifs¢H.

This means that for M with finite S, we need only a logarithmic number of basis tasks (min-
imal generators) [log, |S|] (for |S| > 1) to specify an exponential number of composed tasks

M| =251,

Finally, we summarise the main differences between the developed task algebras in Table 3.1.
While the Boolean task algebra necessitates the most assumptions, it is also the most powerful.
In the next section, we will show that an additional benefit of Boolean task algebra is its basis
can be obtained directly from the task bounds.

Assumptions Benefits
Same Same Binary Union Negation Full
environ-  reward rewards  and inter- Boolean
ment bounds section logic
Task lattice v v
De Morgan task v v v v
algebra
Boolean task v v v v v v
algebra

Table 3.1: Trade-offs between the necessary assumptions and benefits of each lattice structure.
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GE

Figure 3.8: Basis (minimal generators) for the Boolean task algebra bounded by {[], ll}

(f) Pack and do not pack all red and blue objects into the bin: (l A —H) A (B A —H)

Figure 3.9: Terminal rewards (left), optimal values and policies (middle) and sample robot
trajectories (right) for the compositions of Boolean tasks in the bin packing domain. Optimal
policies and value functions are obtained using Q-learning.
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Figure 3.10: Examples of Boolean task sub-algebra with basis {[ 1,1}, {I&, &}, {E], &},
{[O0,[O1} and task space bounds {[ ], I}, {E5, B}, {10, B8}, {{C], 1} respectively.

Example 3.4. In the bin packing domain, consider the Boolean algebra bounded by the tasks
where all non-terminal rewards are 0, and all terminal rewards are 0 ([]) for the lower bound
and 1 () for the upper bound. This gives | M| = 22! possible tasks, which can all be specified
by composing only [log, 121] = 7 basis tasks (Figure 3.8). This basis is obtained using the
same process described by Nangue Tasse et al. [2020b] for the Four Rooms ones (Example 2.1).

Now consider the specification of two tasks, B and B, in which the robot must pack all the red and
blue objects into the bin respectively. Unlike before, their respective rewards are binary for this
example: [],[C]. Figure 3.9 shows the rewards, optimal policies, optimal value functions, and
resulting robot trajectories for sample logical compositions. Note how the binary rewards result
in semantically different compositions. For example, the negation of the M task here now means
“do not pack all red objects in the bin”. Also, meaningless compositions like (l A —H) A\ (B A\ —H)
now produce the lower bound task [_], where all states have 0 rewards.

Figure 3.10 shows the Boolean sub-algebra generated by all logical compositions of {l, B} (left-
most), and other examples resulting from different choices of task space bounds and basis. This
illustrates an interesting result: It is not necessary to restrict all transition rewards to 0 or —that
is, use the task bounds {D, .}—to obtain Boolean logic over tasks. As it turns out, any transition
reward can be used as long as they are the transition rewards of some choice of task bounds. All
such rewards are valid, with different task bounds simply leading to different operator semantics.

3.4 Related works

3.4.1 Logical Composition

The ability to compose tasks and value functions was first demonstrated using the linearly-
solvable MDP framework [Todorov 2007], where value functions could be composed to solve
tasks similar to the disjunctive case [Todorov 2009]. van Niekerk et al. [2019] show that the same
kind of composition can be achieved for deterministic tasks using entropy-regularised RL [Fox
et al. 2016], and extend the results to the standard RL setting, where agents can optimally solve
the disjunctive case. Using entropy-regularised RL, Haarnoja et al. [2018a] approximates the
conjunction of tasks by averaging their reward functions, and demonstrates that by averaging the
optimal value functions of the respective tasks, the agent can achieve near-optimal performance.
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(2) 0.5(Rg + Re) () 0.5(R_g + R_m R.+R.>
0-5 0.5(R .+R
(d) min{ Ry, Rg} (e) min{R g, R m ® mln mlr{lE%R. R.}
min .7 .}

Figure 3.11: Consider four tasks, H, -, H, and —M in the bin packing domain. The top row
shows their conjunctions approximated using average of rewards while the bottom one shows
their true conjunctions using the min of rewards. (Adapted from Nangue Tasse et al. [2020b])

Adamczyk et al. [2023ab] later generalises these results by providing optimally bounds for
different classes of composition operators, beyond averaging and logical composition. Beyond
zero-shot composition, some works introduce few-shot learning approaches to compose policies
similarly to the disjunctive case [Hunt et al. 2019; Alver and Precup 2022a] or the conjunctive
case [Peng et al. 2019; Urain et al. 2023]. Although lacking theoretical foundations, their results
show that an agent can learn compositions of existing basis skills to solve a new complex task.

All these works consider disjunctions and conjunctions of tasks separately. In contrast, we unify
these to obtain tasks specified as an arbitrary disjunction of conjunctions (or conjunction of
disjunctions), and further extend them to include negations. We also note that while previous
work has used the average reward function to approximate the conjunction operator [Haarnoja et
al. 2018a; Hunt et al. 2019; van Niekerk et al. 2019], tasks specified by averaging the rewards
quickly diverge from the task specified by the min of rewards (the conjunction). In particular,
Figure 3.11 shows how the average reward task becomes very different to the min rewards
task after only 3 operations. This highlights the importance of working towards zero-shot
composition using the true logical operators, as it enables multiple arbitrary logical compositions
while retaining the meaning of the specified tasks.

3.4.2 Temporal-Logic Composition

Finally, while we focus on tasks specified using only logic operators (like V, A, =), there
is a significant number of works that also consider temporal operators (like THEN, UNTIL,
EVENTUALLY) [Littman et al. 2017; Jothimurugan et al. 2019; Camacho et al. 2019]. For
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example, tasks like M A —l THEN —l A B, where the agent needs to first pack only red objects
into the bin and then pack only blue objects into the bin. These works assume a given or
predefined reward function—commonly rewards of 1 for successful task completions and zero
rewards otherwise—and instead focus on state augmentation and reward shaping approaches for
improving the sample efficiency of RL. More recent works focus on skill composition approaches
for improving sample-efficiency [Jothimurugan et al. 2021; Araki et al. 2021; Icarte et al. 2022],
however they only consider the temporal composition of sub-tasks and sub-skills (and not their
logical composition). This is commonly done by converting a temporal logic task specification
into a finite-state machine that represents the temporal order of the logic-specified sub-tasks
(sub-tasks like m A\ —H). These works also assume that the rewards for said sub-tasks are given
or predefined, so that temporally composable sub-skills can be learned for each sub-task—often
through the options framework [Sutton ez al. 1999]. In contrast, we provide a framework for
obtaining the logical composition of tasks with arbitrary rewards (and skills for goal-reaching
tasks without further learning), with guarantees on the semantics of the logic operators.

3.5 Conclusion

This chapter presents significant contributions to the formalisation of task specification within the
realm of reinforcement learning. We have extended the existing framework of Nangue Tasse e?
al. [2020b] by generalising the operations for conjunction, disjunction, and negation—gradually
progressing from a general lattice to a Boolean algebra—to tasks with arbitrary rewards in
potentially stochastic environments. Interestingly, through this formalisation, we have shown
that task rewards need not be constrained to only goal rewards that are either desirable or
undesirable to obtain a Boolean task algebra. They need only be defined by the rewards of
arbitrary choices of task bounds. Finally, we have shown that this Boolean algebra over tasks is
isomorphic to a Boolean algebra over the power-set of environment transitions. This formalises
the semantics of propositional logics on the space of tasks, since Boolean algebra is also the
structure that formalises the semantics of propositional logics. Since propositional logics in turn
are the foundation of all formal languages, this is an important result that lays the foundation for
task specifications in arbitrary formal languages.
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Chapter 4

Learning safe rewards

This chapter is based on the under-review work
“ROSARL: Reward-Only Safe Reinforcement Learning” [Nangue Tasse et al. 2023b], in
collaboration with Tamlin Love, Mark Nemecek, Steven James, and Benjamin Rosman.

In the previous chapter, we looked at how to compose tasks to produce composite tasks with
valid logical semantics. However, how do we design the rewards of the tasks to be composed
to guarantee safe optimal policies? If we hope to deploy RL in the real world, agents must be
capable of completing tasks while avoiding unsafe or costly behaviour. For example, a navigating
robot must avoid colliding with objects and actors around it, while simultaneously learning to
solve the required task. Figure 4.1 shows an example.

Many approaches in RL deal with this problem by allocating arbitrary penalties to unsafe states
when hand-crafting the reward function. However, the problem of specifying a reward function
for desirable, safe behaviour is notoriously difficult [Amodei et al. 2016]. Importantly, penalties
that are too small may result in unsafe behaviour, while penalties that are too large may result
in increased learning times. Furthermore, these rewards must be specified by an expert for each
new task an agent faces. If our aim is to design truly autonomous, general agents, it is then
simply impractical to require that a human designer specify penalties to guarantee optimal but
safe behaviours for every task.

Figure 4.1: Example trajectories of prior work—TRPO [Schulman er al. 2015] (left-most),
TRPO-Lagrangian [Ray et al. 2019] (middle-left), CPO [Achiam et al. 2017] (middle-right)—
compared to ours (right-most) in the Safety Gym domain [Ray ez al. 2019]. For each, a point
mass agent learns to reach a goal location (green cylinder) while avoiding unsafe regions (blue
circles). The cyan block is a randomly placed movable obstacle.
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When safety is an explicit goal, a common approach is to constrain policy learning according
to some threshold on cumulative cost [Ray et al. 2019; Achiam et al. 2017]. While effective,
these approaches require the design of a cost function whose specification can be as challenging
as designing a reward function. Additionally, these methods may still result in unacceptably
frequent constraint violations in practice, due to the large cost threshold typically used.

Rather than attempting to both maximise a reward function and minimise a cost function, which
requires specifying both rewards and costs and a new learning objective, we should simply
aim to have a better reward function—since we then do not have to specify yet another scalar
signal nor change the learning objective. This approach is consistent with the reward hypothesis
[Sutton and Barto 2018] which states:

“ All of what we mean by goals and purposes can be well thought of as maximisation of the
expected value of the cumulative sum of a received scalar signal (reward). ”

Therefore, the question we examine in this chapter is how to determine the Minmax penalty—the
smallest penalty assigned to unsafe states such that the probability of reaching safe goals is
maximised by an optimal policy. Rather than requiring an expert’s input, we show that this
penalty can be bounded by taking into account the diameter and controllability of an environment,
and a practical estimate of it can be learned by an agent using its current value estimates. We
make the following main contributions:

(i) Bounding the Minmax penalty (Section 4.1.3): We obtain the analytical form of an upper
and lower bound on the Minmax penalty and prove that using the upper bound results
in learned behaviours that minimise the probability of visiting unsafe states (Theorem
4.2); We also show that these bounds can be accurately estimated using policy evaluation
[Sutton and Barto 2018] (Theorem 4.1).

(ii) Learning safe policies (Section 4.2): We show that accurately estimating the Minmax
penalty or bounds is NP-hard (Theorem 4.3). We then propose a simple model-free al-
gorithm for learning a practical estimate of the Minmax penalty while learning the task
policy. Since the approach only modifies the rewards for unsafe transitions, it can be
integrated into any RL pipeline that learns value functions.

(iii) Experiments (Section 4.3): Finally, we investigate the behaviour of agents that only
rely on their learned Minmax penalty to solve tasks safely. Our results demonstrate that
these reward-only agents are capable of learning to solve tasks while avoiding unsafe
states. Additionally, while prior methods often violate safety constraints, we observe that
reward-only agents consistently learn safer policies.

4.1 Avoiding unsafe absorbing states

Given an environment, we aim to bound the smallest penalty (hence the largest reward) to use as
feedback for unsafe transitions to guarantee safe optimal policies. To model this problem, we
focus on undiscounted MDPs (y = 1) with bounded rewards R: S X A XS — [Ruin Rmax] that
model stochastic shortest path tasks [Bertsekas and Tsitsiklis 1991]. Here, an agent must reach
some goals in the non-empty set of absorbing states G C S while avoiding unsafe absorbing
states G' C G. Since tasks are undiscounted, 7* is guaranteed to exist by assuming that the value
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function of improper policies is unbounded from below—where proper policies are those that
are guaranteed to reach an absorbing state [van Niekerk et al. 2019]. Since there always exists a
deterministic 7* [Sutton and Barto 1998], and 7* is proper, we will focus our attention on the
set of all deterministic proper policies II.

We formally define a safe policy as a proper policy that minimises the probability of reaching
any unsafe terminal state from any internal state:

Definition 4.1 (Safe Policy). Consider an environment (S, A, P). Where st is the final state
of a trajectory and G' C G is the non-empty set of unsafe absorbing states, let PT(sp € G')
be the probability of reaching G' from s under a proper policy © € 11. Then T is called safe if
7 € argmin P (sp € G') forall s € S.
w'ell

Remark 4.1 (Safety vs Optimality). Since proper policies reach G, Definition 4.1 equivalently
says that safe policies are those that maximise the probability of reaching safe goal states G\ G'.
Since optimal policies are also proper, this means that safe optimal policies also maximise the
probability of reaching G \ G'. For example, an agent that loops forever in a non-absorbing
region of the state space is neither proper, nor safe, nor optimal.

We now define the Minmax penalty as the largest reward for unsafe transitions that lead to safe
optimal policies:

Definition 4.2 (Minmax Penalty). Consider an environment (S, A, P) where task rewards
R(s,a, s') are bounded by [ Ryyy Ryux] forall s' ¢ G'. Let T be an optimal policy for one such
task (S, A, P, R). We define the Minmax penalty of this environment as the scalar Ryjipmax € R
that satisfies the following:

(i) If R(s,a,5") < Rygimmax for all ' € G', then 7* is safe for all R;

(ii) If R(s,a,s") > Rugimax for some s' € G' reachable from S \ G, then there exists an R s.t.
" is unsafe.

4.1.1 A motivating example: The chain-walk environment

To illustrate the difficulty in designing reward functions for safe behaviour, consider the sim-
ple chain-walk environment in Figure 4.2a. It consists of four states sg, 81), s2, (S5 where
G = {@D, 53} and G' = {@)}. The agent has two actions a;, a, the initial state is s, and
the diagram denotes the transition probabilities. Rewards for safe transitions are bounded by
[Rvin Rumax] = [—1 0]. The absorbing transitions have a reward of 0 while all other transitions
have a reward of Ry, = —1, and the agent must reach the goal state (s3), but not the unsafe
state (89). Hence, we want to use a sufficiently high penalty for transitions into 8y), such that
the optimal policy is safe—maximises the probability of transitioning from s, to s,. Figures
4.2b-4.2d exemplify how too large penalties result in longer convergence times (for example
a penalty of —10), while too small ones result in unsafe policies (for example a penalty of 0),
demonstrating the need to find the Minmax penalty.

Since the transitions per action are stochastic, controlled by py,pe € [0 1], and (83 is further
from the start state sy than §3), the agent may not always be able to avoid @y. In fact, for
p1 = p2 = 0 and —1 penalty for transitions into ), the optimal policy is to always pick ay
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Figure 4.2: A chain-walk environment (a), and the effect of different penalties (b—d) on the
failure rate of optimal policies and the total timesteps needed to learn them in it (using value
iteration [Sutton and Barto 1998]). The black dashed lines in (b—d) show the Minmax penalty.

which always reaches ‘ For a sufficiently high penalty for reaching . (any penalty higher
than —2), the optimal policy is to always pick action a;, which always reaches (s3. However,
for p; = po = 0.4 (Figure 4.2c¢), a higher penalty is required for a; to stay optimal. To capture
this relationship between the stochasticity of an environment and the required penalty to obtain
safe policies, we introduce a notion of controllability, which measures the ability of an agent
to reach safe goals. Additionally, observe that as p, increases, the probability that the agent can
transition from s, to (s3 decreases—thereby increasing the number of timesteps spent to reach
the goal. Therefore, the penalty for . must also consider the environment’s diameter to ensure
an optimal policy will not simply reach ‘ to avoid self-transitions in ss.

4.1.2 On the diameter and controllability of MDPs

Clearly, the size of the penalty that needs to be given for unsafe states depends on the size of
the environment. We define this size as the diameter of the environment, which is the highest
expected timesteps to reach an absorbing state from an internal state when following a proper
policy:

Definition 4.3 (Diameter). Define the diameter of an environment as

D = max max E [T'(sy € G|7)],
seS\G well
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where T (sy € G|r) is the number of timesteps taken to reach G from s when following a proper
policy .

Given the diameter of an environment, a possible natural choice for the reward for unsafe
states is to give a penalty that is as large as receiving the smallest task reward for the longest
path to safe goal states: Ryjax = RyinD’, where D’ is the diameter for safe policies D' =

mg\é maﬁcE [T'(sr € G\ G'|7)] . However, while Ryuax aims to make reaching unsafe states
s€ e

worse than reaching safe goals, it does not consider the controllability of an environment, nor
the possibility that an unsafe policy receives Ryax everywhere in its trajectory. We can formally
define the controllability of an environment as follows:

Definition 4.4 (Controllability). Define the degree of controllability as

C := min min  P7(s Gh.
seS\G ~eli, s ( T ¢ )
P;T(STQQ‘)#O

C measures the degree of controllability of the environment by simply taking the smallest
non-zero probability of reaching safe goal states by following a proper policy. For example, if
the dynamics are deterministic, then any deterministic policy 7 will either reach a safe goal or
not. That is, P (s7 ¢ G') will either be 0 or 1. Since we require P7 (sp ¢ G') # 0, it must be that
C = 1. Consider, for example, the chain-walk environment with different choices for p. Since
actions in s, do not affect the transition probability, there are only 2 relevant deterministic policies
m1(s) = ay and 7y (s) = ay. This gives PT' (sp € G') = (1 —p1)L(po = 1) and P (sp ¢ G') =
p1l(p2 = 1). Here, C = 1 when p; = py = 0 because the task is deterministic and (§3) is
reachable. C' then tends to 0.5 as p; and ps gets closer to 0.5, making the environment uniformly
random. Finally, the environment is not controllable when p = 1 since (s3 is unreachable from s,.

Remark 4.2 (Uncontrollability). We can think of C' = 0 as the limit of C when safe goals are
unreachable.

Given the diameter and controllability of an environment, we can now define a choice for the
Minmax penalty that takes into account both D, C, and Ryax: Ryinv = (Ryvin — Ruax) g. This
choice of penalty says that since stochastic shortest path tasks require an agent to learn to achieve
desired terminal states, if the agent enters an unsafe terminal state, it should receive the largest
penalty possible by a proper policy. We now investigate the effect of these penalties on the
failure rate of optimal policies.

4.1.3 On the failure rate of optimal policies

We begin by proposing a simple model-based algorithm for estimating the diameter and control-
lability, from which the penalties are then obtained. We describe the method here and present
the pseudo-code in Algorithm 4. Here, the diameter is estimated as follows: (i) For each de-
terministic policy 7, estimate its expected timesteps T'(sr € G) (or T'(sy € G\ G') for D) by
using policy evaluation [Sutton and Barto 2018] with rewards of 1 at all internal states; (ii) Then,
calculate D using the equation in Definition 4.3. Similarly, the controllability is estimated by
estimating the reach probability P7(sy € G') of each deterministic policy 7 using rewards of
1 for transitions into safe goal states and zero rewards otherwise. This approach converges via
the convergence of policy evaluation (Theorem 4.1).
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Algorithm 4: Estimating the Diameter and Controllability

Input :(S, A, P), Rp(s') =1(s' € G), Ro(s,a,s') =1(s€Gand s € G\ G")
Initialise : Diameter D = 0, Controllability C' = 1, Value functions V5 (s) = 0, Vi (s) = 0,

Error A =1
for 7 € Il do for*wpeln do tion for ¢
/* Policy evaluation for D */ / i~ IZY evaluation for C */
while A > 0 do While > 0do
- f <_g Sd
for s € S do or s o
o3 P(s']s,7(s)) (Rp(s) V3 P(ss, () (Rels,7(5), )
S +VE(S)) A N +VE(s)
A =max{A, |V3(s) — v'|} = max{A, [V5(s) = v'[}
VE(s) < VE(s) < v
P for s € S do
for s € S do o ' _ o
D = max{D, Vi(s)} (i’ :Cmm{C’, VE(s)}if VE(s) # 0
else

Theorem 4.1 (Estimation). Algorithm 4 converges to D and C for any controllable environment.

Proof. This follows from the convergence guarantee of policy evaluation [Sutton and Barto
1998]. []

Figure 4.3 shows the result of applying this algorithm in the chain-walk MDP. Here, Rpinmax
is compared to accounting for D only (Ryax) and accounting for both C' and D (Ryy). Inter-
estingly, we can observe Ry < Ruinmax and Ryvax > Ruinmax consistently, highlighting how
considering the diameter only is insufficient to guarantee safe optimal policies. It also indicates
that these penalties may bound Rpjinmax in general. We show in Theorem 4.2 that this is indeed
the case.

Theorem 4.2 (Safety Bounds). Consider a controllable environment where task rewards are
bounded by [RMIN RMAX] fOl" all S/ ¢ g!. Then RMIN S RMinmax S RMAX-

Proof. Let * be an optimal policy for an arbitrary task (S, .4, P, R) in the environment. Given
the definition of the Minmax penalty (Definition 4.2), we need to show the following:

() If R(s,a,s") < Ry forall s € G', then 7* is safe for all R; and

(i) If R(s,a,s’) > Ryax for some s’ € G' reachable from S \ G, then there exists an R s.t.
7" is unsafe.

(1) Since 7* is optimal, it is also proper and hence must reach G.

Assume 7* is unsafe. Then there exists another proper policy 7 that is safe, such that

PT(sp €G) < P" (sp €G') forsomesc S.

Then,
VT (s) > V7(s)
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Figure 4.3: Effect of stochasticity (p; and py) and task rewards ([s,) on the bounds (Ryin
and Ryax) of the Minmax penalty (Ryinmax) in the chain-walk environment. The controllability
and diameter for the bounds are estimated using Algorithm 4. The optimal policies are obtained
via value iteration [Sutton and Barto 1998].

— BT > ET

Z R(st, at, Se+1) Z R(sy, au, St+1)]

t=0 t=0
— BT [G" '+ R(sr.ar, s41)] = BT [G"' + R(sr, ar, s741)]
T-1
where G~ 1 = Z R(s¢,at, s¢1+1) and T is a random variable denoting when sr,1 € G.
t=0

- IE’; [GT_l} + (P;*(ST ¢ g!)R(ST, ar,sry1) + PW*(ST € g!) Runsate (57, @, 3T+1))
> ]Eﬂ- [GT_l} (Pﬂ(ST Q g|> <3T,&T, ST—H) + P (ST € g ) unsafe(sTvaT; ST—H)) 5
7).

*

where Ry denotes the rewards for transitions into G' and ar = 7 (s
— K7 [G"7'] + (P (st € G)R(sr, ar, s741) + Runsate (ST, a7, 5741))

> ES [GT_I} + (Psﬂ(ST ¢ g!) (sr,ar, s741) + Pl (st € g) Runsate (ST, @, 8T+1)) )
— ET [GT_l} + (1 — Pl (sp € g‘)) Runsate (ST, ar, S711)

> E7 [GT] + (P (s ¢ G) =PI (s7 ¢ G)) R(st, ar, s741)
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e ]E;r* [GT_I} + (1 — PSW(ST - g')) RMIN7 since Runsafe(STa ar, ST+1) < RMIN-

>EL(GT ) + (PI(sr € G) — PT (sr € G')) R(sr, ar, s74+1)
* D
— K] [G" ']+ (1—Pl(sre g!)) (RmiN — RMAX)E
>EL(GT ) + (PI(sr € G) — PT (sr €G')) R(sr, ar, s7+1)
- E’;* [GT_l} + (Rvmiv — Rmax)D
>ET [GT7Y] + (Pl (sr ¢ G — P (sp ¢ g’)) R(sr,ar, sT+1), using definition of C.
- Eg* [GT_l} — RMAXD
> E¢ [GT_I] + (PI(ST ¢ g!) - P:*(ST ¢ g!)) R(STJGTJ 5T+1> — RyinD
— E7 [G"7'] — RmaxD >0,
since E;r [GT_I} + (PSW(ST € g|) — PSTF* (ST g g'>) R(ST, ar, ST+1) Z RMIND
— Eg* [GT_l} > RyvaxD.
But this is a contradiction since the expected return of following an optimal policy up to a terminal

state without the reward for entering the terminal state must be less than receiving Ryax for every
step of the longest possible trajectory to G. Hence we must have 7* € arg min P" (s € G').
s

(ii) Assume 7* is safe. Then, P™ (sp & G') > PT (sp ¢ G') forall s € S, n’ € 1L

s

Let 7 be the policy that maximises the probability of reaching s’ € G' from some state s € G.
Then, similarly to (i), we have

VT (s) > V7(s)
= Eg* [GT_I} + (Psﬁ*(ST S g') - PSW(ST € g|)) Runsafe<5T; ar, 3T+1)
> E7[G"] + (PI(sr £ G) = PT (s £ G)) Rlsr, ar, st41)

— EY [GT 1} (Ps (s7 € g Psﬂ (s €@ )) Runsate (ST, a1, S711)

<ET [T+ (P ( st ¢ G') — PX(sr € G")) R(sr,ar, s741)
— ET [G"~ 1} + (PI(sr €G') — PT (s7 € G')) Ruax

<E [GT 1 + (PT( ST ¢ G)— Pr(sr € G)) R(sr,ar, s7+41), since Rynste > Ruax.
— E7 [G"7'] + (P (s7 €G') — PF (sr € G")) Ry D’

<EI [G"'] +(PF (sT ¢ G) — Pr(sr € G)) R(sr,ar, s741), by definition of Ryax.
— E7 [G" '] + RunD’

<E7 [G" 4+ (PT(sr €G) = Pl (sr € G)) R(sr,ar, s741)
— E7 [G"] + RyumwD’ < 0
But this is a contradiction when R is such that the agent receives a reward of Ryax > |Rvin|D’
at least once in its trajectory when following 7 and zero everywhere else.

O

Theorem 4.2 says that for any MDP whose rewards for unsafe transitions are bounded above by
RMn, the optimal policy both minimises the probability of reaching unsafe states and maximises
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the probability of reaching safe goal states. Hence, any penalty Ryvin — €, where € > 0 can
be arbitrarily small, will guarantee safe optimal policies. Similarly, the theorem shows that
any reward higher than Ryax may have optimal policies that do not minimise the probability
of reaching unsafe states. These can be observed in Figure 4.3. The figure demonstrates why
considering both the diameter and controllability of an MDP is necessary to guarantee safe
policies, because the diameter alone does not always minimise the failure rate.

4.2 A practical algorithm for learning safe policies

While the Minmax penalty of an MDP can be accurately estimated using policy evaluation
(Algorithm 4), it requires knowledge of the environment dynamics (or an estimate of it). These
are difficult quantities to estimate from an agent’s experience, which is further complicated
by the need to also learn the true optimal policy for the estimated Minmax penalty. Hence,
obtaining an accurate estimate of the Minmax penalty is impractical in model-free and function
approximation settings where the state and action spaces are large. In fact, it is NP-hard since
it depends on the diameter, which requires solving a longest-path problem.

Theorem 4.3 (Complexity). Estimating the Minmax penalty Ryinma: accurately is NP-hard.

Proof. This follows from the NP-hardness of longest-path problems. Since the Minmax penalty
is bounded by Ryn and Ryax, both are defined by the diameter, which is in turn defined as the
expected total timesteps of the longest path. [

Given the above challenges, we require a practical method for learning the Minmax penalty.
Ideally, this method should require no knowledge of the environment dynamics and should easily
integrate with existing RL approaches. To achieve this, we first note that ( Ryyy — RMAX)% =
(DRvix — DRvax) & = (Vmin — Viax) - where Vi and Viyax are the value function bounds.
Hence, a practical estimate of the Minmax penalty can be efficiently learned by estimating
the value gap Viin — Vmax using observations of the reward and the agent’s estimate of the
value function. We describe the method here and present the pseudo-code in Algorithm S. This
algorithm requires initial estimates of Ry and Ryax, Which in this work are initialised to
0. The agent receives a reward r; after each environment interaction and updates its estimate
of the reward bounds Ryyn < min(Rm, 7¢) and Ryax < max(Ryax, 7¢), the value bounds
VMIN min(VMIN, RMIN7 V(St>) and Vyax < max(VMAX, RMAX7 V(St>), and the Minmax
penalty Ryn < Van — Vimax, where V (s;) is the learned value function at time step ¢. We note
how the controllability C'is not explicitly considered in this estimate of Ry;n. Given that the
main purpose of C'is to make Ryyn more negative the more stochastic the environment is, we
notice that this is already achieved in practice by the reward and value estimates. Since Ryn
is estimated using Ryn <— min( Ry, 7¢), then every time the agent enters an unsafe state, we
have that: r; < Rmmn, Bvin ¢ Ruin, and then Ryny < Ry — Vmax. This means that when
the estimated Vjax is greater than zero, the penalty estimate Ry become more negative every
time the agent enters an unsafe state.

Finally, whenever an agent encounters an unsafe state, the reward can be replaced by Ry to dis-
incentivise unsafe behaviour. Since Vjax is estimated using Viyiax < max(Vumax, Rmax, V (s¢)),
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it leads to an optimistic estimation of Ryyn. Hence, in practice, we observe no need to add € > 0
to RMIN‘

Algorithm 5: RL while learning Minmax penalty

Input  :RL algorithm A, max timesteps 7'
Initialise : RMIN = O, RMAX = 0, VMIN = RMIN, VMAX = RMAX’ mand V as per A
for tin T do
observe a state s;, take an action a, using 7 as per A, and observe s; 1,7
Ryin, Rmax < min( Ry, 7¢), max(Ryax, 7t)
Vmin, Vmax < min<VMIN; R, V(St))’ maX(VMAX; Ruax, V(5t>)
Rmin < Vmin — Vmax
re + Ryviv if si41 € G' else 1,
update 7 and V' with (s, as, s441,7¢) as per A

4.3 Experiments

While the theoretical Minmax penalty is guaranteed to lead to optimal safe policies, it is unclear
whether this also holds for the practical estimate proposed in Section 4.2. Hence, this section
aims to investigate three main natural questions regarding the proposed practical algorithm:
(i) How does Algorithm 5 behave when the theoretical assumptions are satisfied? (i) How does
Algorithm 5 behave when the theoretical assumptions are not satisfied? (iii) How does Algorithm
5 compare to prior approaches towards Safe RL? For each result, we report the mean (solid line)
and one standard deviation around it (shaded region).

4.3.1 Behaviour when theory holds

To answer this question, we consider the LAVA GRIDWORLD which is a tabular stochastic
shortest path domain.

Domain (LAVA GRIDWORLD) This is a simple gridworld environment with 11 positions
(|S] = 11) and 4 cardinal actions (].A4| = 4). The agent here must reach a goal location G
while avoiding a lava location L (hence G = {L,G} and G' = {L}). A wall is also present in
the environment and, while not unsafe, must be navigated around. The environment has a slip
probability (sp), so that with probability sp the agent’s action is overridden with a random action.
The agent receives Ryax = +1 reward for reaching the goal, as well as R, = —0.1 reward at
each timestep to incentivise taking the shortest path to the goal. To test our approach, we modify
Q-learning [Watkins 1989] with e-greedy exploration such that the agent updates its estimate of
the Minmax penalty as learning progresses and uses it as the reward whenever the lava state is
reached, following the procedure outlined in Section 4.2. The action-value function is initialised
to O for all states and actions, ¢ = 0.1 and the learning rate o = 0.1.

Setup and Results We examine the performance of our modified Q-learning approach across
three values of the slip probability of the LAVA GRIDWORLD. A slip probability of O represents
a fully deterministic environment, while a slip probability of 0.5 represents a more stochastic

47



environment. Results are plotted in Figure 4.4. In the case of the fully deterministic environment,
the Minmax penalty bound obtained via Algorithm 4 is Ryyn = —9.9, since C' = 1 and D = 9.
However, the agent is able to learn a relatively smaller penalty (—1.1 in Figure 4.4b) to consis-
tently minimise failure rate and maximise returns (Figures 4.4c and 4.4d). The resulting optimal
policy then chooses the shorter path that passes near the lava location (sp = 0 in Figure 4.4a).
As the stochasticity of the environment increases, a larger penalty is learned to incentivise longer,
safer policies. Given the starting position of the agent next to the lava, the failure rate inevitably
increases with increased stochasticity. The resulting optimal policy then chooses the longer path
that passes to the left of the centre wall (sp = 0.25 and sp = 0.5 in Figure 4.4a). We can, there-
fore, conclude that while there is a gap between the true Minmax penalty and the one learned via
Algorithm 5, this algorithm can still learn optimal safe policies when the theoretical setting holds.
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Figure 4.4: Effect of increase in the slip probability of the LAVA GRIDWORLD on the learned
Minmax penalty and corresponding failure rate and returns. The black circle in (a) represents
the agent. The experiments are run over 10,000 episodes and averaged over 70 random seeds.
The shaded regions indicate one standard deviation.

4.3.2 Behaviour when theory does not hold
To answer this question, we consider the Safety Gym PILLAR domain, a discounted continuous

control setting.

Domain (Safety Gym PILLAR) This is a custom Safety Gym environment [Ray et al. 2019],
in which the simple point robot must navigate to a goal location  around a large pillar Q
(hence G = {@.} and G' = {@}). Just as in Ray ez al. [2019), the agent uses pseudo-lidar
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to observe the distance to objects around it (|S| = R%), and the action space is continuous
over two actuators controlling the direction and forward velocity (|.A| = R?). The goal, pillar,
and agent locations remain unchanged for all episodes. The agent is rewarded for reaching the
goal, as well as for moving towards it (the default dense distance-based reward). Each episode
terminates after 1000 timesteps or once the agent reaches the goal. Also collisions with the pillar
results in immediate episode termination with a reward of —1. To test our approach, we modify
Trust Region Policy Optimisation (TRPO) [Schulman et al. 2015] (denoted TRPO-Minmax) to
use the estimate of the Minmax penalty as described in Algorithm 5. We use TRPO since it is a
state-of-the-art RL algorithm for continuous action spaces, and it is also a canonical baseline
in prior works [Ray et al. 2019; Sootla et al. 2022]. We also use the same hyperparameters for

TRPO as in Ray et al. [2019], since those are the hyperparameters they found to work best for
tasks in the Safety Gym environment.
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Figure 4.5: Effect of increase in the action noise of the PILLAR domain on the learned Minmax
penalty and corresponding failure rate and returns. The spheres in (a) show the agent’s trajectories.

The experiments are run over 10 million episodes and averaged over 10 random seeds. The
shaded regions indicate one standard deviation.
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Setup and Results We examine the performance of TRPO-Minmax for five levels of noise
in the PILLAR environment, similarly to the experiments in Section 4.3.1. Here, the value of
the noise denotes the scalar by which a random action vector is scaled before vector addition
with the agent’s action. Note that this noise value is different from the random seed used for
the random number generator in our experiments. Results are plotted in Figure 4.5. We observe
similar results to Section 4.3.1, where the agent uses its learned Minmax penalty (Figure 4.5b)
to successfully learn safe policies (Figure 4.5¢) while solving the task (Figure 4.5d), using
safer paths for more noisy dynamics (Figure 4.5a). Interestingly, it also correctly prioritises low
failure rates when the dynamics are too noisy to safely reach the goal (noise > 5). We can,
therefore, conclude that Algorithm 5 can learn safe policies even in discounted high-dimensional
continuous-control domains requiring function approximation.

4.3.3 Comparison to baselines

To answer this question, we consider representative baselines in the PILLAR environment and
canonical Safety Gym ones.

Domains (Safety Gym POINTGOAL1-HARD, POINTPUSH1-HARD, CARBUTTON1-HARD)
These domains are respectively the modified version of the POINTGOAL1, POINTPUSHI, and
CARBUTTONI1 tasks from OpenAl’s Safety Gym environments [Ray et al. 2019], which repre-
sents complex, high-dimensional, continuous control tasks. In all of the original domains, G = ()
by default. We only modify each of them to make unsafe transitions terminal G = G' = {states
with cost > 0}, leaving the safe goal states non-terminal (G \ G' = (). In POINTGOAL1-HARD, a

CmCmmemeT e | e e,
S - w e
“ - ® o 'y

(a) POINTGOALI-HARD (b) POINTPUSH1-HARD

|
|

oo ' . ® ¢ & o
(%)
at . T
* 8 -t
(c) POINTBUTTONI1-HARD (d) CARBUTTON1-HARD

Figure 4.6: Safety Gym Hard environments.
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simple robot must navigate to a goal location i across a 2D plane while avoiding several hazards
O (where G = G' = {@}). The agent’s sensors, actions, and rewards are identical to the PILLAR
domain. Unlike the PILLAR domain, the goal’s location is randomly reset when the agent reaches
it, but does not terminate the episode. Each episode only terminates after 1000 timesteps or
once the agent enters a hazard blue region, thereby making the problem much harder than the
original POINTGOAL]1 task. POINTPUSHI1-HARD is similar to POINTGOAL1-HARD, but with
the addition of a pillar obstacle Q and a large box [ | the agent must push to the goal location

to receive the goal reward (where G = G' = {@©,@}). Finally, POINTBUTTON1-HARD and
CARBUTTONI-HARD are also similar to POINTGOAL1-HARD, but with the more complex car
robot for CARBUTTON1-HARD and the addition of these to both: (i) Gremlins @, which are
dynamic obstacles that move around the environment and must be avoided; and (ii) Buttons e,
where the agent must reach the goal button with a cylinder § to receive the goal reward (where
G =G'={O,m, ®}). Figure 4.6 illustrates all these domains.

Baselines As a baseline representative of typical RL approaches, we use Trust Region Policy
Optimisation (TRPO) [Schulman et al. 2015]. To represent constraint-based approaches, we
compare against Constrained Policy Optimisation (CPO) [Achiam et al. 2017], TRPO with
Lagrangian constraints (TRPO-Lagrangian) [Ray et al. 2019], and Sauté RL with TRPO (Sauté-
TRPO) [Sootla et al. 2022]. All baselines except Sauté-TRPO use the implementations provided
by Ray et al. [2019], and form a set of widely used baselines in safety domains [Zhang et al.
2020; Sootla et al. 2022; Yang et al. 2023]. Sauté-TRPO uses the implementation provided
by Sootla et al. [2022]. As in Ray et al. [2019], all approaches use feed-forward MLPs, value
networks of size (256,256), and tanh activation functions. For the constrained algorithms, the
cost threshold is set to 0, the best we found from trying ¢ € {0, 1,25, 100} (Ray ez al. [2019] used
a threshold of 25). Finally, all the TRPO hyperparameters are kept the same as in prior work since
those are the hyperparameters they found to work best for a variety of tasks in the Safety Gym
environment. The experiments are run over 10 million episodes and averaged over 10 random
seeds. The shaded regions in the plots indicate one standard deviation over the 10 random seeds.

PILLAR Results (Figures 4.7-4.11) The baselines all achieve similar performance (except
Sauté-TRPO), maximising returns but maintaining a relatively high failure rate. Their similar
performance also suggests that despite these baselines being different ways of constrained
learning of policies, they may still result in similar learning dynamics when everything else is
kept constant—such as fixed goal states and fixed unsafe states. By examining the failure rates in
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Figure 4.7: Performance of TRPO in the PILLAR environment with varying noise.
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Figure 4.8: Performance of TRPO-Lagrangian in the PILLAR environment with varying noise.
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Figure 4.9: Performance of CPO in the PILLAR environment with varying noise.
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Figure 4.10: Performance of Sauté-TRPO in the PILLAR environment with varying noise.
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Figure 4.11: Performance of TRPO-Minmax in the PILLAR environment with varying noise.

Figures 4.7-4.9 and sample trajectories in Figure 4.12 for the stochastic cases noise > 0, we can
also conclude that all the baselines have learned risky policies—maximise rewards over short
trajectories that are highly likely to result in collisions. Interestingly, Sauté TRPO is the worst-
performing of all the baselines (Figure 4.10. It successfully maximises returns while minimising
cost only for the deterministic environment (notse = 0), but completely fails for the stochastic
ones (noise > (). By comparison, the results obtained in Figure 4.11 show TRPO-Minmax
successfully maximising returns while minimising cost for both deterministic and stochastic
environments. In addition, when the noise level is too high (noise > 2.5), TRPO-Minmax
consistently prioritises maintaining low failure rates over maximising returns.
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Figure 4.12: Sample trajectories of policies learned by each baseline and our TRPO-Minmax
approach in the Safety Gym PILLAR environment with varying noise levels. To sample the
trajectories for each noise level, we use the same three environment random seeds across all the
algorithms.

POINTGOAL1-HARD Results (Figures 4.13-4.16) Unlike the previous PILLAR results, the
baselines here achieve significantly different cost and reward performance. We assume this is
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due to the high variance in the dynamics from random goal positions and unsafe states. However,
similar to the PILLAR results, they all achieve significantly high returns at the expense of a rapidly
increasing cumulative cost. These results are also consistent with the benchmarks of Ray ez al.
[2019] where the cumulative cost of TRPO is much greater than that of TRPO-Lagrangian, which
is greater than that of CPO. By comparison, TRPO-Minmax dramatically reduces the failure rate
while still being able to solve the task, as observed by average returns achieved as well as the
trajectories observed (Figure 4.17). However, returns are lower due to the dense reward function
that incentivises moving towards the goal despite the large number of hazards in-between.
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Figure 4.13: Comparison with baselines in the POINTGOAL1-HARD environment.
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Figure 4.14: Comparison with baselines in the POINTPUSH1-HARD environment.
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Figure 4.15: Comparison with baselines in the POINTBUTTON1-HARD environment.
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Figure 4.16: Comparison with baselines in the CARBUTTON1-HARD environment.
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(a) TRPO successes (top) and failures (bottom)

(b) TRPO-Lagrangian successes (top) and failures (bottom)

(c) CPO successes (top) and failures (bottom)

(d) Sauté-RL successes (top) and failures (bottom)

(e) TRPO-Minmax successes (top) and failures (bottom)

Figure 4.17: Sample trajectories of policies learned by each baseline and our Minmax approach
in the Safety Gym POINTGOAL1-HARD domain, in the experiments of Figures 4.13-4.16.
Trajectories that hit hazards or take more than 1000 timesteps to reach the goal location are
considered failures.
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4.4 Related works

Reward shaping: The problem of designing reward functions to produce desired policies in RL
settings 1s well-studied [Singh et al. 2009]. Particular focus has been placed on the practice of
reward shaping, in which an initial reward function provided by an MDP is augmented in order
to improve the rate at which an agent learns the same optimal policy [Ng ef al. 1999; Devidze et
al. 2021]. While sacrificing some optimality, other approaches like Lipton ef al. [2016] propose
shaping rewards using an idea of intrinsic fear. Here, the agent trains a supervised fear model
representing the probability of reaching unsafe states in a fixed horizon, scales said probabilities
by a fear factor, and then subtracts the scaled probabilities from Q-learning targets. These
approaches differ from ours in that they seek to find reward functions that improve convergence
while preserving the optimality from an initial reward function. In contrast, we seek to determine
the optimal rewards for terminal states in order to minimise undesirable behaviours irrespective
of the original reward function and optimal policy.

Constrained RL: Disincentivising or preventing undesirable behaviours is core to the field of
safe RL. A popular approach is to define constraints on the behaviour of an agent, tasking the
agent with limiting the accumulation of costs associated with violating safety constraints while
simultaneously maximising reward [Altman 1999; Achiam et al. 2017; Chow et al. 2018; Ray
et al. 2019; HasanzadeZonuzy et al. 2021]. Widely used examples of these approaches include
constrained policy optimisation (CPO) [Achiam et al. 2017], which augments TRPO [Schulman
et al. 2015] with constraints to satisfy a constrained MDP, and TRPO-Lagrangian [Ray et al.
2019], which combines Lagrangian methods with TRPO. Another example is Sauté RL [Sootla
et al. 2022], which incorporates the cost function into the rewards and augments the state
with the remaining “cost budget” spent by violating safety constraints. Other constraint-based
approaches include Projection-based CPO [Yang et al. 2020], which projects a TRPO policy
onto a space defined by constraints, and PID Lagrangian methods [Stooke et al. 2020], which
augment Lagrangian methods with PID control.

Shielding: Another important line of work involves relying on interventions from a model
[Dalal ef al. 2018; Wagener et al. 2021] or human [Tennenholtz et al. 2022] to prevent unsafe
actions from being considered by the agent (shielding the agent) or prevent the environment from
executing those unsafe actions by correcting them (shielding the environment). Other approaches
here also look at using temporal logics to define or enforce safety constraints on the actions
considered or selected by the agent [Alshiekh er al. 2018]. These approaches fit seamlessly
into our proposed reward-only framework since they are primarily about modifications on the
transition dynamics and not the reward function—for example, unsafe actions here can simply
lead to unsafe goal states.

4.5 Conclusion

This chapter investigates a new approach towards safe RL by asking the question: Is a scalar
reward enough to solve tasks safely? To answer this question, we bound the Minmax penalty,
which takes into account the diameter and controllability of an environment in order to minimise
the probability of encountering unsafe states. We prove that the penalty does indeed minimise
this probability, and present a method that uses an agent’s value estimates to learn an estimate of
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the penalty. Our results in tabular and high-dimensional continuous settings have demonstrated
that, by encoding the safe behaviour directly in the reward function via the Minmax penalty,
agents are able to solve tasks while prioritising safety, learning safer policies than popular
constraint-based approaches. Our method is also easy to incorporate with any off-the-shelf RL
algorithms that maintain value estimates, requiring no changes to the algorithms themselves.
By autonomously learning the penalty, our method also alleviates the need for a human designer
to manually tweak rewards or cost functions to elicit safe behaviour. While it may be feasible
to handcraft reward or cost functions to induce safe behaviour for individual tasks, our ultimate
aim is to have general agents capable of operating safely in a variety of environments, and thus
we cannot rely on human-crafted reward or cost functions.

Finally, while we show that scalar rewards are indeed enough for safe RL, the current analysis
is only applicable to unsafe terminal states—which only covers tasks that can be naturally rep-
resented by stochastic-shortest path MDPs. Given that other popular RL settings like discounted
MDPs can be converted to stochastic shortest path MDPs [Bertsekas 1987; Sutton and Barto
1998], a promising future direction could be to find the dual of our results for other theoretically
equivalent settings. In conclusion, we see this reward-only approach as a promising direction
towards truly autonomous agents capable of independently learning to solve tasks safely.
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Part 11

Flexible Agents w%

In Chapter 5, we introduce world value functions, a new knowledge
representation for RL agents that provably leads to the ability to solve any
given goal-reaching task in the environment. We then show in Chapter 6
that zero-shot skill composition now holds for goal-reaching tasks with
potentially stochastic dynamics. Finally, we show in Chapter 7 that this

leads to agents that are provably sample efficient in lifelong RL.
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Chapter 5

World value functions

This chapter is based on the published work
“World Value Functions: Knowledge representation for multitask reinforcement learning”
[Nangue Tasse et al. 2022a] and the peer-reviewed work
“World Value Functions: Knowledge Representation for Learning and Planning” [Nangue Tasse
et al. 2022b], both in collaboration with Steven James and Benjamin Rosman.

In RL, tasks are specified through a reward function from which the agent receives feedback.
Most commonly, an agent represents its knowledge in the form of a value function, representing
the sum of future rewards it expects to receive. However, since the value function is directly tied
to one single reward function (and hence task), it is definitionally insufficient for constructing
agents capable of solving a wide range of tasks.

Hence, for an agent to be capable of solving new tasks without additional learning, it needs to
have gained sufficient information from its experience when learning to solve previous tasks.
Thus, its goal during learning should not be to learn an optimal policy or standard value function,
since it only encodes how to maximise the current task rewards. Instead, it may need to learn
an optimal general value function (GVF) that encodes how to maximise both the current task
rewards as well as all task rewards in a task space—GVFs are simply sets of standard value
functions corresponding to some set of MDPs [Sutton ef al. 2011]. Precisely, it may need to
learn | M| value functions. However, this is clearly impractical since the number of tasks is
potentially infinite (Mp for example).

In this chapter, we seek to overcome this limitation by proposing world value functions (WVFs),
a goal-oriented knowledge representation that encodes how to achieve not only the current task
goals, but also the goals of any other goal-reaching task. Precisely, WVFs are a form of GVF
defined by |G| < |S| value functions (where G is the goal space). We make the following main
contributions in this chapter:

(i) World value functions (Section 5.1.2): We formally introduce WVFs, which extend
the goal-oriented value functions introduced by Nangue Tasse et al. [2020b] (EVFs) to
more general goal-reaching tasks. Importantly, we show that WVFs can be learned from a
single stream of experience; no additional information or modifications to the standard
RL framework are required.
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(ii) Mastery (Section 5.1.1): In the literature, agents that can achieve every goal in their
environment are said to possess mastery [Veeriah et al. 2018]. We prove that WVFs
do, in fact, possess this property in goal-reaching tasks. Importantly, given a learned
WVF, this property can be leveraged to solve any new task by just estimating its reward
function, which reduces the RL problem to supervised learning. We also demonstrate
these experimentally, showing how an agent learns not only how to achieve the given task
goals, but also how to achieve all the other goals in the environment.

(iii)) Planning (Section 5.1.4): We show that WVFs implicitly encode the dynamics of the
world and can be used for model-based RL. Experimental results in the Four Rooms
domain [Sutton ef al. 1999] validate our theoretical findings, while demonstrating that not
only can WVFs be learned faster than regular value functions, they can also be leveraged
to perform Dyna-style planning [Sutton 1990] to improve sample efficiency.

5.1 Theory

We first define goal-reaching tasks as a generalisation of the shortest path tasks considered in
prior zero-shot composition work [van Niekerk ef al. 2019; Nangue Tasse et al. 2020a]—and
significantly relax Assumption 2.3:

Definition 5.1. We define goal-reaching tasks as tasks in a deterministic environment, where the
rewards across tasks differ only at terminal transitions (transitions into absorbing states), and
there exists an optimal policy that reaches a terminal transition with non-zero probability.

Examples of such goal-reaching tasks are discounted tasks (y € [0, 1)) with zero non-terminal
rewards—such as the bin-packing grid-world examples—and undiscounted tasks (y = 1) with
strictly negative non-terminal rewards [van Niekerk et al. 2019; Nangue Tasse et al. 2020a]—
such as the Four Rooms example.

Now let M = (S, A, P, Ry, ) be a task from some task space M with absorbing space G.
We first define the internal goal space G C S of an agent as all states where it experiences a
terminal transition. Different from other goal-conditioned approaches where goals are specified
by the environment, here the goal an agent wishes to achieve is chosen by itself. The agent’s
aim now is to simultaneously solve the current task, while also learning how to achieve its own
internal goals. To do so, the agent can define its own goal-conditioned reward function R,
which extends ), to penalise itself for achieving goals it did not intend to:

Definition 5.2. For a task M with reward function Ry, bounded by |Ryn, Ryax] C R, the
extended reward function Ry, : S X G x A x S — R is given by

(5.1)

/ Ruun if s' is absorbing and s # g,
Ry (s,g,a,8) = R / _
v(s,a,8")  otherwise,

where Ry is the lower bound we derived for the Minmax penalty in Chapter 4.

This new reward function represents the idea that if an agent terminates in a state (s € @) that is
not the goal state it was trying to reach (s # g), it should receive the smallest reward possible
(Rmiv)- Intuitively, the penalty Ryyn adds one bit of information to the agent’s rewards, and we
will later prove this is sufficient for the agent to learn the value of achieving its internal goals in
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a goal-reaching task. The agent must now compute a world Markov policy m : S x G — Pr(A)
that optimally reaches any reachable goal. A given world policy 7 is characterised by a world
value function defined as follows:

Definition 5.3. For a task M, the world value function Q7, : S x G x A — R is given by

Q%(S7g7a) :Eg RM(Sagua7S/)+thRM(St’g»at7St+l> . (52)

t=1

This specifies the expected return obtained by executing a from s, and thereafter following
7 to reach g. Since for each g these WVFs are equivalent to standard value functions, it
follows that all standard results on standard value functions also hold for WVFs by extension.
This can be shown by simply noting that each ¢ € G corresponds to a well defined MDP
M, := (S, A, P, Ry, ) with reward function Ry, (s, a) := Ra(s, g, a). In particular, we have
that there exists an optimal deterministic world policy 7, and unique optimal WVF Qj},, such
that Q3 (s, g, a) = Qf; (s, 9, a) = max, Qf,(s, 9)-

Similarly to standard value functions, we want to still be able to extract the optimal policy

that solves the current task by acting greedily over Q},: 7;,(s) € argmax, max, Q},(s, g, a).
Theorem 5.1 shows that this is possible, at least in the case of goal-reaching tasks.

Theorem 5.1. Let Ry, Ry, Q3 and Q) be the standard reward function, extended reward
function, optimal value function and optimal world value function respectively for a goal-
reaching task M. Then for all (s,a) in S x A, we have

R]V[(Sa a, 5/) = max RM(37 g, a, S/) and Q?\/[(S? Cl) = max Q}k\/[(sa g, CL)-
9eg 9€g

Proof. We will omit the task subscript M for better readability. First note that

maxR(s,g.a, ') = max{Ru, R(s,a,s)}, ifsis ?bsorbing 53)
9€g R(s,a,s’), otherwise.
= R(s,a,s). (5.4)

Now define

Q.. (s,a) =maxQ*(s,g,a).
geG
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Then if s’ ~ P(-|s, a) is not absorbing, it follows that

[TQma;r} (S,CL,S) = R(Sch?S ) +7 Z P(S |S7a) g}eaijmax(S 7a)

s'"eS

— (s, + 30 P 0) e [ Q')

a’'eA
s'eS

= R(s,a,s') +~ Z P(s'|s,a) max [max Q*(s, g, a')]

s gegG | deA
S

= R(s,a,s’) + max
g€

7Y P(sls.a) max Q*(s’,g,a’)]

s'eS

(Since v > 0 and the dynamics are deterministic)

(Using Equation 5.4)

= max R(s,g,a,s") + max [7 ;S P(s'|s,a) max Q(s',g,a")

= max [R(S,g, a, 5/) +7 Z P(S/|S> a) majl( Q*(S/aga a/)] )
a'e

96 s'eS
since R(s, g,a,s’) = 0and p(s',a,s"”) = 1 with Q*(s”, g,a’) = 0 if s" is absorbing .

o a *
IglegXQ (s,9,a)

= Q:@ax(sv CL).

Hence @)}, is a fixed point of the Bellman optimality operator.

If s ~ p(-|s, a) is absorbing, then

Q: .(5,0) = max Q*(s, g,a) = maxR(s, g,a,s") = R(s,a,s) = Q*(s, a).
geg geg

Since )%, = Q* holds in G and Q)7 is a fixed point of T, then Q¥ . = Q* holds everywhere.

max max max

]

Theorem 5.1 is critical: despite changing the standard RL objective (the standard reward function,
value function, and policy), an agent can always recover these original objects, and can also solve
the current task by simply maximising over goals. WVFs are therefore a strict generalisation
of regular value functions for this type of task. However, we note that this is not necessarily
true for all other types of tasks. For example, consider a stochastic MDP with three goal states
g1, 92, g3, an initial state w with three actions a4, as, as, non-terminal rewards of 0, and goal
rewards of 1, 1, 0 respectively. Table 5.1 shows the transition probabilities, WVF at each goal,
the maximisation over the WVF, and the regular value function for each action in state V.
Clearly for this task, acting greedily over the WVF is suboptimal compared to the standard value
function.
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Actions | P(g1) P(g2) Plgs) | Qar(91) Qirl92) Qislgs) | max, Qi(g) | Q°

a; 0.6 0.2 0.2 0.6 0.2 0 0.6 0.8
as 0.2 0.6 0.2 0.2 0.6 0 0.6 0.8
as 0.5 0.5 0.0 0.5 0.5 0 0.5 1

Table 5.1: Counter example in a stochastic MDP. We omit s and « in the notation for clarity.

5.1.1 Mastery with WVFs

Having established WVFs as a task-specific general value function, we next prove in Theorem 5.2
that those of goal-reaching tasks have mastery—that is, they learn the value of reaching all
achievable goal states in the world. We define mastery as follows:

Definition 5.4. Let Q3 be the optimal world value function for a task M in M. Then Q3},
has mastery if for all g € G reachable from s € S \ G, there exists an optimal world policy
(s, g) € argmax Q3,(s, g, a) that maximises the probability of reaching g from s.

acA

Theorem 5.2. For all goal-reaching tasks M, Q}, has mastery.
Proof. Let each g in G define an MDP M, with reward function

R9(87 a, S,) = RM(Sv g,a, S/)

for all (s,a) in S x A. By Definition 5.1, there exists an optimal policy that reaches a terminal
transition. Let

m,(s) € argmax Q;(s,a) forall s € S.
acA

be such a policy. If g is reachable from s € S \ {g}, then we show that following 7, must reach
g- Assume 7 reaches a different goal state g, with ¢’ # g. Let 7, be a policy that produces the
shortest trajectory to g. Also let G™s and G™ be the returns for the respective policies. Then,

G > G
= G+ Ry(g (o)) = G,
o T
where G7? | = Z V' Rug, (s¢, 7, (5¢), se11) and T is the time at which ¢’ is reached.
=0
— G;‘zl + Ry > G™, sinceg#4¢ €G
= Ruiw > G™ — G;zj_l
— (Rwix — Rvax)D > G™ — G157 |, by definition of Ry
— GI¥, — RuaxD > G™ — Ry D, since G™ > Ry D
— G}, — RyaxD >0
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- G;g_l > RmaxD.

But this is a contradiction, since the result obtained by following an optimal trajectory up to
a terminal state without the reward for entering the terminal state must be strictly less than
receiving Ryax for every step of the longest possible optimal trajectory. Hence we must have

g =g
O

These results are important as they show that a WVF encodes the optimal policy for the current
task (Theorem 5.1)—meaning that we can henceforth focus only WVFs—while also encoding
the optimal policy for achieving any goal in the environment and the value of achieving said
goals in the current task (Theorem 5.2)—which will later be useful for zero-shot composition.

5.1.2 Multitask transfer with WVFs

We now show the advantage of WVFs for multitask transfer under the assumption that an
agent may be faced with solving several goal-reaching tasks M within the same environment
(S, A, P). One immediate result is that if goal-reaching tasks share the same environment, then
their WVFs share the same world policy. That is, the agent has the same notion of goals and
how to reach them, regardless of the current goal-reaching task. Similarly, if we require that the
world policies be the same across goal-reaching tasks, then we have that the goal-reaching tasks
must come from the same world. This is formalised by Theorem 5.3 below.

Theorem 5.3. Let Q" be the set of optimal world action-value functions with mastery of
goal-reaching tasks in M. Then forall s # g € S X G,

m(s,9) € argmax Qjy, (s, g,a)
acA

—
(s, g) € argmax Qy, (s, g,a) VM, My € M.

acA
Proof. Letg € G,s € S\ {g}.

If g is reachable from s, then we are done since Qj,, and Qj,, have mastery (Theorem 5.2).

If g is unreachable from s, then for all (a, s’) in A x S we have

Rwmin, if ¢ is absorbing
RM1(8797G75/): { ’
where 7 , ¢ is the reward for the non-terminal transition (s, a, s")
=Ry (s, 9,a,5")
= Q}k\/ll(svgv a) - QLQ(Saga CL).

Tsas, Otherwise
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We can think of the world as a background MDP M, = (Sy, Ao, Py, Ry) with its own state
space, action space, transition dynamics and background reward function. Any individual
goal-reaching task M is defined by a reward function R},(s,a) that is non-zero only for
transitions entering terminal states. The reward function for the resulting MDP is then simply
Ry (s,a,s") = Ry(s,a,s") + R}, (s,a).

Since all goal-reaching tasks in M share the same dynamics (and consequently the same world
policy), their corresponding WVFs can be written as Qj,(s, g,a) = G% ,, + Rj,(s',a’) for
some s',a’ € S x A, where G _ _ is a constant across goal-reaching tasks that represents the

s7g7a
sum of rewards starting from s and taking action a up until g, but not including the terminal

reward. Using this fact, Theorem 5.4 shows that the optimal value function and policy for any
goal-reaching task can be obtained zero-shot from an arbitrary WVF given the task-specific
rewards:

Theorem 5.4. Ler R}, be the given task-specific reward function for a goal-reaching task
M € M, and let Q* € Q be an arbitrary WVF. Let V (s, g) be the estimated WVF of M
given by
* RT _ * .
max Q' (s, g,a) + (rgg w(g,a) —maxQ*(g, g, a))
Then,
(i) for all g € G reachable from s € S, V', (s,9) = V (s, g).

(i) Vi (s) = max V (s, g), and 7%, (s) € arg max Q* (s, arg max V (s, g), ).
9€g acA 9€g

Proof.

(i): Let g € G be a goal reachable from state s € S. If g = s, then

* RT _ *
max Q"(s, g, a) + (mgf (g, a) —maxQ (g,g,a))

= max R"(g, a) + (IggRM(g,a) —max R (g,a)>

- gle%i(RM(g, a) = Vi(s,9)

If g # s, then

* R . *
Q' (5,9, + (g Ry 9. 0) ~ mx Q' (0, 9.0) )

ac A 90

= max[G} , + R7(g,a™™)] + (rile?i( Riy (g, a) — max R7(g, a)) ,

follows from Theorem 5.2 and Theorem 5.3
— Iglea;}‘( G* + RT(g7 amax) + (R}'w(g7 a;l\/l[ax) _ RT(Q, amax))

s,g9,a
= max[G,., + RE (9, 05%)] = Vi (5,9)
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(ii): Follows directly from (i) above and Theorem 5.3.

]

This has several important implications for transfer learning. Most importantly, an agent can
learn an arbitrary WVF with unsupervised pretraining and then solve any new goal-reaching
task by simply estimating the reward function (from experience or demonstrations).

5.1.3 Learning WVFs

Since WVFs satisfy the Bellman equations, Q* can be learned using any suitable RL algorithm
[Kaelbling 1993; Veeriah et al. 2018; Andrychowicz et al. 2017; Colas et al. 2019; Foster and
Dayan 2002; Mirowski et al. 2017; Moore et al. 1999]. Here, we wish to learn WVFs only with
rewards per state-action obtained by interacting with the environment. Hence, we propose a
simple modification to Q-learning to learn Q* from a single stream of experience. The algorithm
differs from standard Q-learning in several ways: it keeps track of the set of terminating states
seen so far, and at each timestep updates the WVF with respect to both the current state and
action, as well as all goals encountered so far. We extend the algorithm to use the definition of
the extended rewards for the task-dependent rewards.

Algorithm 6: Q-learning for WVFs

Initialise : WVF Q(s, g,a) = 0, goal buffer G = {0}

foreach episode do
Observe initial state s € S and sample a goal g € arg max, max, Q(s, g, a)
while episode is not done do

argmax Q(s,g,a) wp.1—¢
a +— acA
a random action w.p. €
Execute a, observe reward r and next state s’
if s’ is absorbing then G < G U {s}
for ¢ € G do
7+ Ry if ¢ # sand s € G else r

Q(s, g, a) < (f +maxQ(s, ¢/, a’)) —Q(s,d,a)

5+ 5

5.1.4 Planning with WVFs

If the agent’s goal space coincides with the state space (G = §), then an optimal WVF will
implicitly encode the dynamics of the world. We can then estimate the transition probabilities
for each s,a € S x A using only the reward function and optimal WVF. That is, P(s, a, s") for
all s € S can be obtained by simply solving the system of Bellman optimality equations given
by each goal g € S: Q*(s,9,a) = > csP(s,a,5) [R(s,g,a,s') + V*(s', g)] . In practice, if
the transition probabilities are known to be non-zero only in a neighbourhood N (s) of state
s (as is common in most domains), then we only require that the WVF be near-optimal for

s’ g € N(s) x N(s).
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These inferred dynamics can then be used to improve planning by integrating WVFs into
a Dyna-style architecture [Sutton 1990]. Our approach is illustrated in Algorithm 7, where
we combine both model-free and model-based updates to learn the WVE. Importantly, since
the dynamics are inferred from the WVE, using them to plan (Dyna-style) at the start of
training is detrimental, since the WVF will make incorrect predictions. We mitigate this by
computing the mean-squared error of the Bellman equations using the inferred next state,
MSE = W_l(s)| > gens) (Q(s,9,a) — [R(s,g,a,8') + V(s', g)]), and only use the WVF to
plan when the error is less than a threshold (M SE < 107°).

Algorithm 7: Dyna for WVFs using inferred transition functions
Initialise : WVF Q(s, g,a) = 0, Reward function R(s, a, s') = 0, goal buffer G = ()
foreach episode do

Observe initial state s € S and sample g € G

while episode is not done do

argmax Q(s,g,a) wp.1l—¢
a +— acA
a random action w.p. €
Execute a, observe reward r and next state s’
R(s,a,.) < r
if s’ is absorbing then G < G U {s}
for ¢ € G do
f(-RMINifgI 7& sand s € G else r
0 |T+maxQ(s',g',a)| = Qls,¢',0)
Q(s,9',a) < Q(s,g',a) + a6
N s < random previous state
a < random previous action taken in s
r < R(s,a,.)
s’ < Solving N (s) Bellman equations
MSE «+ Wlm deN(s)(Q(Sa 9, Cl) o [R(S7 9, a, 3/) + V(Sla g)])
if M SE < threshold then
for ¢ € G do
7+ Ruwif ¢ # sand s € G else r

0+ [T+ maxQ(s',¢',a')| — Q(s,g',a)
Q(s,¢',a) < Q(s,¢',a) + ad

5+ s

5.2 Experiments

To empirically validate the properties of WVFs described above, we use:

1. the bin packing domain introduced in Example 3.1. Here, the non-terminal rewards
(rewards for all non-terminal states) are 0 and the goal rewards (rewards for terminal
states) range from 0 to 1. We use a discount factor of v = 0.95.
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2. the Four Rooms domain [Sutton et al. 1999], where an agent is required to reach various
goal positions similar to the bin domain. The agent can move in any of the four cardinal
directions at each timestep (with reward —0.1), but colliding with a wall leaves it in the
same state. The agent also has a “‘done” action that can choose to terminate at any position
(with reward of 10 if it is the goal of the current task).

For each of the experiments below, we consider the case where the agent’s goals are the entire
state space (G = S).

5.2.1 Learning WVFs

To verify that WVFs can be learned with standard model-free algorithms, we train an agent
using Q-learning ( Algorithm 6) on the task M in the bin packing domain. Here, the robot must
pack all the red objects into the bin. Figure 5.1 shows the learned WVE. The figure is generated
by first plotting the value functions for all goal states, then displaying each of them at their
respective position in the gridworld representation of the domain. We can observe from the
value gradients of the plots that the learned WVF does indeed have mastery as it encodes how to
achieve all desirable goals, demonstrating the results proven in Theorem 5.2. Notice how for the
goal states corresponding to no red object in the bin (the rightmost column of the plot), the WVF
has zero values everywhere since the agent receives no reward at those goals. As we proved in
Theorem 5.1, we can also maximise over goals to obtain the standard state-value function and
policy as shown in Figures 5.2.

By learning WVFs, an agent learns a large number of diverse solutions to a single task. However,
the upfront cost of learning is likely to be higher since we must learn not only the single value
function, but rather the value function with respect to every goal. We investigate the sample
complexity of learning WVFs (using Algorithm 6) and learning standard value functions (using
standard Q-learning) in Figure 5.3. As expected, we observe that the number of samples required

Qg(s.9.2)

g=(2,9)

1 1TT™. -
EEERER

g=(8,1)

Figure 5.1: Learned WVF for the task of packing all the red objects into the bin. Each square
shows the value of all internal states with respect to the goal state at that position.
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Figure 5.2: Illustrating the standard value functions and policy (right) for the task of packing all
the red objects into the bin (left), obtained by maximising over the goal values of the learned
WVF Qg (middle).
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deviation over 25 random seeds.

Figure 5.3: Sample complexity for training WVFs and standard value functions.

to learn optimal WVFs is greater than that for learning optimal standard value functions (Fig-
ure 5.3b). Interestingly, we also observe that it is more sample efficient to learn WVFs if we only
care about the performance of the resulting policy instead of the optimality of the Q-values—
despite the fact that WVFs have an additional dimension that must be learned (Figure 5.3a). We
conjecture that this is due to the induced goal-directed exploration of Algorithm 6, similarly to
the results obtained by Kaelbling [1993].

We show in the next section how we can leverage the WVFs to improve transfer in a multi-task
setting, which amortises the upfront cost over multiple tasks.

5.2.2 Planning with WVFs

We now use the Four Rooms domain to demonstrate that the transition probabilities can be
inferred from the learned WVF and used to improve learning. We compare leveraging the
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Figure 5.4: (a) Learned WVF. (b) Inferred values and policy for solving the current task.

inferred dynamics while learning (Algorithm 7) to Q-learning for both WVFs and regular value
functions, as well as Dyna for regular value functions. We train these four agents on the task
where they must learn to navigate to either the middle of the top-left or bottom-right rooms.
Figure 5.4 shows the learned WVF, which is generated by plotting the value functions for every
goal position and displaying them at their respective xy positions. The results in Figure 5.5
illustrate that sample efficiency can be greatly improved by integrating the planning capabilities
of WVFs.

10
5
%))
c
)
&)
o 5 —— Value function (Q-learning)
Value function (Dyna)
—— WVF (Q-learning)
-10 —— WVF (Dyna)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episodes le2

Figure 5.5: Returns during training for both WVFs and regular value functions, with and without
planning. The shaded regions indicate one standard deviation over 25 runs.

Figures 5.6 (left) and (middle) respectively show the transitions inferred at the end of Dyna
(WVF) Dyna learning. This is done by solving the Bellman equations with s’, g € S x S and
s',g € N(s) x N(s). For each, we infer the next state probabilities for taking each cardinal
action at the center of each room, and place the corresponding arrow in the state with highest
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probability. The red arrows in Figure 5.6a correspond to incorrectly inferred next states, which is
a consequence of the learned WVF not being near optimal at all states for all goals. Figure 5.6b
shows that in practice, if the WVF is not near-optimal, we can still infer dynamics by using
s',g € N(s) x N(s). Figure 5.6¢c shows sample trajectories for following the optimal policy
using the inferred transition probabilities. The gray-scale color of each arrow corresponds to the
normalised value prediction for that state.

(b)

Figure 5.6: (a-b) Inferred one-step transitions. Red arrows indicate incorrect predictions. (c)
Imagined rollouts using the learned WVE.

(b) Navigating to the bottom of the grid.

Figure 5.7: Four Rooms domain. From left to right on each figure: The task specific rewards,
inferred WVF using Theorem 5.4, and inferred values and policy from maximising over goals.
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5.2.3 Multitask transfer with WVFs

Having learned a single WVF in the Four Rooms domain (Figure 5.4), we now show that it
can be used to solve subsequent tasks—by combining the learned W VF with the task-specific
rewards as per Theorem 5.4. Critically, this means that any new task an agent might face can
simply be solved by estimating its reward function, reducing the RL problem to a supervised
learning one. Figure 5.7 illustrates the reward functions and subsequent WVFs and policies for
two sample tasks. Importantly, given the reward functions (which can be estimated from data),
the optimal policies can immediately be computed without further learning.

5.3 Related works

The idea of learning how to achieve all goals in a multi-goal environment from a single stream
of experience was first introduced by Kaelbling [1993] with dynamic goal (DG) functions. DG
functions encode the distance between states and goals learned by giving an agent minimum
rewards at internal states and maximum rewards at boundary states. While lacking in theory,
Kaelbling [1993] demonstrated in the tabular case that DG functions learned how to achieve
goals significantly faster than regular value functions. Veeriah et al. [2018] later used UVFAs
to extend these results to the function approximation case, and showed that such goal-oriented
value functions were also useful as pre-training and auxiliary knowledge for improving sample
efficiency. Another similar work is hindsight experience replay [Andrychowicz et al. 2017],
where an agent also learns to achieve multiple goals to accelerate the learning of a main task.
It is similar to Veeriah et al. [2018] in that it also uses UVFAs for function approximation,
but differs in that it only considers tasks with a single desired goal per episode which is given
upfront to the agent. The agent then learns to achieve the desired goals faster by also learning
how to achieve undesirable ones.

In contrast to these approaches, WVFs introduced in this section are a principled generalisation
of DG functions to the case of arbitrary task reward functions. Instead of giving an agent
minimum rewards at internal states and maximum rewards at boundary states (as in related
works [Kaelbling 1993; Veeriah et al. 2018]), we use the extended reward function (Equation 5.1),
which allows for arbitrary task rewards.

5.4 Conclusion

In this chapter, we addressed the fundamental challenge in reinforcement learning (RL) where
traditional approaches, reliant on single reward functions and value functions, limit an agent’s
ability to generalize across tasks. To tackle this limitation, we introduced world value functions
(WVFs) as a novel goal-oriented knowledge representation. Unlike standard value functions,
WVFs encode how to achieve not just the current task goals but also those of any other goal-
reaching task. Our contributions include the formal introduction of WVFs, demonstrating their
capacity for learning from a single stream of experience without additional modifications to
the RL framework. We established that agents equipped with WVFs attain mastery, capable of
achieving all goals within their environment. Moreover, we showcased WVFs’ utility in planning,
illustrating their ability to implicitly encode world dynamics and significantly improve sample
efficiency in model-based RL scenarios. Through theoretical analysis and empirical validation
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in environments like the Four Rooms domain, we highlight WVFs’ promise in addressing the
challenges of task generalization and sample efficiency in RL.
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Chapter 6

Logical composition of WVFs

In the previous chapters, we extended the framework of Nangue Tasse et al. [2020b] to formalise
the logical composition of tasks with arbitrary rewards. We then generalised their extended
value functions (EVFs) with world value functions (W VFs), which enabled mastery of arbitrary
goal-reaching tasks. Importantly, we showed that WVFs encode sufficient information about
learned tasks to solve new ones without further learning, given the reward function of the new
tasks to solve. Can a similar result be obtained when only the Boolean expression (instead of the
reward function) of a new task is given?

In this chapter we formally show that WVFs of goal-reaching tasks are indeed sufficient to solve
the logical composition of tasks zero-shot.! We do this by first formalising their composition
under the relevant algebraic structures, just as was done with task compositions. This gives
us mathematical tools which can be used to formally prove zero-shot composition and further
explore some additional properties of the established structures. Hence, we make the following
main contributions in this chapter:

(i) Conjunction and disjunction of WVFs (Section 6.1): We extend the conjunction and
disjunction operators of Nangue Tasse et al. [2020b] to the WVFs of arbitrary goal-
reaching tasks. We then show that there is a homomorphism between the task and WVF
algebra, enabling zero-shot solutions to arbitrary conjunctions and disjunctions of goal-
reaching tasks. Even when the WVFs are sub-optimal (due to function approximation for
example), these compositions are shown to result in no loss in optimality (Section 6.4).

(i) Negation of WVFs (Section 6.2): Given a De Morgan algebra over goal-reaching tasks,
we show that the same negation operator defined by Nangue Tasse ef al. [2020b] also leads
to a De Morgan algebra over WVFs. Similarly to Section 6.1, we show that both algebra
are also homomorphic, leading to zero-shot solutions to arbitraty logical compositions of

'While we focus on the WVFs of goal-reaching tasks (Definition 5.1), we leave our proofs as general as possible,
making it clear which parts actually make use of this constraint. In particular, we note how none of these proofs
make use of the deterministic dynamics constraint. This will be particularly useful for our proofs in lifelong RL
(Chapter 7), where we show the effect of relaxing this constraint.
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goal-reaching tasks. Finally, the results in Section 6.4 show that these compositions only
lead to a constant decrease in the sub-optimality of learned WVFs.

(iii) Propositional logics over WVFs (Section 6.3): Interestingly, given a Boolean algebra
over goal-reaching tasks, we introduce a new definition for the negation of the corre-
sponding WVFs that still leads to a Boolean WVF algebra. Similarly to the Boolean task
algebra, we show that this Boolean EVF algebra is isomorphic to the power-set over states
(or transitions). This is a significant result, as it will lead to an efficient way of learning
WVFs. Finally, and remarkably, Section 6.4 then shows the new negation leads to no loss
in optimality when WVFs are sub-optimal.

6.1 WYVF lattice

Similarly to how we formalised the disjunction and conjunction of tasks using the lattice
algebraic structure, we now formalise the disjunction and conjunction of WVFs. Since WVFs
are real valued functions, a natural partial order on them is pointwise < (the usual < on R). We
state the resulting poset formally as follows:

Proposition 6.1. Let (M, V, \) be a lattice of goal-reaching tasks, and let Q" be the set of
optimal WVFs of tasks in M. Then (Q*, <) is a partially ordered set with the relation < given
by

Qi < Qi F Qi (5,9,0) < Qi (s, 9,a) forall (s,g,a) € S x G x A
Proof. Follows from the usual < relation on R. 0

Given that all goal-reaching tasks share the same non-terminal rewards, the WVF for each goal
state is partially ordered based only on the terminal reward at that goal state (since the terminal
reward at the other goal states is set to Ry~ by the extended reward function). Hence, since
(M, V, A) is a lattice based on the usual < over rewards, every pair of optimal WVFs has a
supremum and an infimum in Q" respectively given by simply applying pointwise sup and in f:

Proposition 6.2. Let (M, V, \) be a lattice of goal-reaching tasks, and let Q" be the set of
optimal WVFs of tasks in M. Then for all My, My € M,

(l) Sup{Q}k\Jl? Q?MQ} - Q*Ml\/]\/IQ 6 Q*’ (”) 1nf{Q7W17 Qj(\lg} - Q}kwl/\]\/fg E Q*

Proof. Without loss of generality, let us first assume that

R (9:9:731,(9.9),8") < Ran (9, 9,73, (95 9), 8)
for some goal g € G and next state s’. Then,
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RM1(97977T7\41(979)73/) S RMg(ng)ﬂ-}k\/[Q(g)g)?S,) (61)

= R (5,9, m3,(5,9),5) <Rap(s,9,mh,(s,9),s) forall s € S, (6.2)
since the rewards are the same at non-terminal states and Ry at terminal states s # g.
(6.3)
= ]E”z*wl Z ’YtR(St, g5ty Sp41) | < Ty Z Y R(st, 9, i, 5141 (6.4)
t=0 t=0
= Vi, (5,9) < Vi,(s,9). (6.5)

Now let My, My € M. Then for all (s, g,a) in S X G X A,

(i):
Qip(s,9,a) = sup  Qj(s,9,a)
Me{M;,M>}

= sup [RM(Sa g,a,8) +7 Y P(s|s.a) Vi (s g)]

MG{Ml,Mz} s'€S
= sup  Ru(s,ga,)+ sup |7 P(sls,a)Vi(s,9)|,
ME{M1,M2} ME{M17]\/[2} s'eS
since Ry(s,9,a,s") =0Vs ¢ G and P(wl|s,a) = 1 with V},(w,g) =0Vs € G.
=R (8,9,a,8) +  sup [V > P(s]s,a) V(s g)]

ME{M17M2} s'eS

=Ry, (s, 9,a,8) + Z P(s'|s,a) sup  V3(s’,g) (Using Equation 6.5)

s'eS MG{M17M2}
= RMl\/Mz(S’ g, a, 8/) +y Z P(S/‘S, a)V?\/llng (5/7 g)u
s'eS

Using Equation 6.5 since  sup  Ru(g,9,m3,(g,9), ") defines Vi, 1., (5', 9).
ME{Ml,MQ}

- Q*Ml\/Mg(S’ g, CL).

- Q:up = Q}k\/ll\/Mg S Q*
Since Q,,, is in Q" it follows from the pointwise < on R that it is the lowest upper bound
of QF and Q5.

(ii): Follows similarly to (i).

]

This means that the set of WVFs Q" forms a lattice (Q", V, A) with VV and A given by Qj, V

Qi = sup{ Qi Qi t and Qi A Qi = inf{Qj,,, Qjy, } respectively. We define these
formally as follows:

Definition 6.1. Let (M, V, \) be a lattice of goal-reaching tasks, and let Q" be the set of optimal
WVFs of tasks in M. The join \V : Q" x Q" — O and meet \ : Q* x Q" — Q operators
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are given by the mappings (Qiy,, Qir,) — Qiy V Qig, and (Qir,, Qir,) — Qiy A Qi
respectively, where

Qi VQy,: SXGxXA—-R
(Saga(I) = Sup{Q?Ml(Smg)a)aQ?\/[2(8797G>}a

Qy, NQhp: SXGXxA—=R
(s,9,a) — inf{Qjy, (s, 9,a), Qy, (s, 9,a) }.

In fact (Q", V, A) forms a distributive lattice, following from the distributivity of in f and sup
on real numbers. We state this as follows:

Proposition 6.3. Let (M, V, A) be a lattice of goal-reaching tasks, and let Q" be the set of
optimal WVF's of tasks in M. Then (Q",V, \) is a distributive lattice.

Proof. Follows from the distributivity of inf and sup. O

Given a non-empty finite set O of lower bounded subsets of WVFs A/ C Q*, the WVF lattice
(Q*,V, N\) gives us a principled way of specifying the disjunction of conjunctions:

\ (/\ N) (0.0) = s (1t Qi fs..0)).

NeO \Ne~N Neo

Similarly, given a non-empty finite set O of upper bounded subsets of WVFs ' C QF, the
conjunction of disjunctions is given by

\ ( v N) (5:9.0) = inf, (SUP Q7v<s,g,a>> |

NeO \NeN NeN

Having established a lattice algebra over tasks and WVFs, we show that there exists an equiva-
lence between the two. As a result, if we can specify a task under the lattice algebra, we can
immediately obtain the optimal WVF for the task. This homomorphism follows from the fact

that sup{Qj,,, Qi } = Qisvar and inf{Qj, , Qiy, } = Qi aas, in Proposition 6.2.
Theorem 6.1. Let (M, V, \) be a lattice of goal-reaching tasks, and let (Q*,V,\) be the
corresponding lattice of WVFs. Let H : M — QF be any map from M to Q" such that
H(M) = Q;, forall M in M. Then H is a homomorphism.

Proof. Follows from the proof of Proposition 6.2, which gives

Q’]ﬁwl \/ Q}(WQ = Sup{Q}kwl’ Q?WQ} = Q*Ml\/MQ

and
Q?V[l /\ Qﬂ;\lg - 1nf{Q7\417 QLQ} - QTM]_/\]\/IQ

VM, My € M. O
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Figure 6.1: Showing the disjunction and conjunction of the learned WVFs (Qg, Qg) in the bin
packing domain. The top row shows the WVFs, and the bottom one shows the value functions
and policies obtained by acting greedily over their values per goal.

N
-

Figure 6.2: Hasse diagram of the WVF lattice generated by Qg and Qg.

Experiment 6.1. Consider the bin packing domain introduced in Example 3.1 where internal
rewards are 0 and the goal rewards range from 0 to 1. The discounting used is v = 0.95.
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We train an agent on the tasks B and W, in which the robot must respectively pack all the red and
blue objects into the bin. Figure 6.1 shows the learned WVFs Q*. and Q*. together with their
disjunction and conjunction. Notice how the composition of WVF's exhibits the same semantics
as that of rewards. This highlights the homomorphism proven in Theorem 6.1, showing the
structural similarity between the task space and value function space. Finally, Figure 6.2 shows
the Hasse diagram of the WVF sub-lattice generated by all combinations of disjunction and
conjunction of Qg and Qg

6.2 De Morgan WVF algebras

Having formalised the meaning of disjunction and conjunction, we next formalise the meaning
of the negation of WVFs. A De Morgan algebra enables us to define this by adding the minimal
required properties that encapsulate the desired semantics of negation. Specifically, we assume
that the set of tasks is bounded and that the WVF of each task has mastery. We then define the
negation of an WVF as follows:

Definition 6.2. Let (M, V, A\, —, Msyp, MinF) be a De Morgan lattice of goal-reaching tasks,
and let Q" be the set of optimal WVFs of tasks in M. Define Qiyr, Qsyp € Q to be the
optimal Q-functions for the task bounds M yp, Mgsyp € M. Then the negation operator is
given by

- Q"= QF
Q" — —Q", where -Q*: SxGx A—=R
(S7g7a) = (Q*SUP(S7g7a) + Q?NF(Smgaa)) - Q*(S7g7a)'

We now show that the negation of Q* € Q" is indeed in Q" for WVFs with mastery:

Proposition 6.4. Let (M, V, A\, —, Mgsyp, Minr) be a De Morgan lattice of goal-reaching
tasks, and let Q" be the set of optimal WVFs of tasks in M. Then -Q, = Q*,, € Q" for all
M e M.

Proof. Forall (s,g,a)inS x G x A,

[T=Qi] (5,9:a) = Roni(s,9,0,8') +7v ) P(s']s,a) max —Qj, (s, 9, ')

s'eS
= [(R‘MSUP (8’ g, a, S/) + RMINF(Sa g,a, 3,)) - RM(S7 g,a, 3,)] +
v Z P(Sll‘S? a) E}g} [(Q*SUP(Slu g, a/) + Q?NF(S/7 g, CL,)) - QM(3,7 g, CL,)]
s'eS

= [(RMSUP (57 g,a, S/) + RMINF(S7 g, a, S/)) - R]Vf(57 g, a, S/)] +

P(s * / / * / / . * / /
VZE;S‘ (SlS,CL) {(?SXQSUP(S7£]7CL)+I§,lgj‘(QINF(Sagaa)> I;}SEQAM(Sagaa)
(Using Theorem 5.3)

=Rmgyp(s,9,a,8) +7 Z P(s'|s,a) max Qiyp(s,g,d )+
s'eS
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RMINF (87 g,a, 3I> + Y Z P(8/|S7 Cl) g}éﬁ( Q?NF(S/v g, a/)_

s'eS

Ru(s,g,a,8)+~ Z P(s|s,a) max Qi (s, g,d")

s'eS
- (QEUP<8797Q) + Q?NF(Sagaa)) - Q*M(Sagva)
= _‘Qj\/l(s’g,a’)'

Hence —Q}, is a fixed point of the Bellman optimality operator.
If s € G, then

_‘Q*M(Sag>a) = (Q*SUP<8>g>a) + Q;NF(Sagaa)) - Q*M<S>g>a)
= (RMSUP(S7g7a’ 3/) + RMINF(S’g’a7S/)) - RM(S,g,CL,S/) = Q:M(S7g7a)'

Since =Qj;, = QF,, holds in G and —Qj}, is a fixed point of 7, then =Q};, = Q*,, holds
everywhere.

[]
We now formalise the interaction of the negation of WVFs with the conjunction and disjunction
of WVFs as follows:

Proposition 6.5. Let (M, V, A\, —, Msyp, Minr) be a De Morgan lattice of goal-reaching
tasks, and let Q" be the set of optimal WVF's of tasks in M. Then (Q",V, A\, =, Q&yp, Qi nr)
is a De Morgan algebra.

Proof. Let Qy,,,Qj,, € Q" be the optimal (Q-value functions for tasks M;, M, € M with
reward functions 7, and r,7,. We show that =, VV, A satisfy the De Morgan algebra axioms (i) —
(vii).?

(i)—(v): These follow from the properties of inf and sup.
(vi): This follows from the bounds Q¢ 5, Qjnp € Q.
(vii): The first condition easily follows from the definition of —. For the second condition, we
have that for all (s,g,a)inS x G x A,
_'(Q}(\/Il \/Q*M2)(5,g,a) = (Q*SUP(‘S’gaa)+Q;NF(Svgva>> - sup QJ*\/[(S7g7a)
]V[G{Ml,MQ}
(Qspp(s,9,a) + Qryp(s, g,a)) + Me{lﬁth} Qi (s, 9,a)
= lnf (QEUP(Svgva) +Q?NF(Saga CL)) _Q*M(Sagaa)

ME{Ml,MQ}
= <—\Q}<\41 /\ ﬁQ}kWQ)(‘S?g? a)'

>The De Morgan algebra axioms are stated in Definition 2.3.
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Having established a De Morgan algebra over tasks and WVFs, we show that there exists an
equivalence between the two. As a result, if we can specify a task under the De Morgan algebra,
we can immediately derive the optimal WVF for the task.

Theorem 6.2. Let (M, V, A, -, Mgsyp, Minr) be a De Morgan lattice of goal-reaching tasks,
and let (Q*,V,\,—, Q%yp, Qinp) be the corresponding De Morgan lattice over WVFs. Let
H : M — Q" be any map from M to Q" such that H(M) = Q3 for all M in M. Then H is

a homomorphism.

Proof. This follows from the proof of Proposition 6.4 and the homomorphism between the task
and WVF lattices. 0
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Figure 6.3: Illustration of the De Morgan sub-lattice generated by composing Qg and Q.
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Figure 6.4: The learned boundary WVFs (Q%;p, Q7 ) and the composition of learned WVFs
(Qg, Qg)- The top rows in each figure show the WVFs and the bottom ones show the value
functions and policies obtained by acting greedily over goals.

Experiment 6.2. Consider the bin packing domain introduced in Example 3.1. We use the WVFs
learned in Experiment 6.1 for the tasks B and B. Figure 6.3 shows the De Morgan sub-lattice
generated by all combinations of their disjunction, conjunction, and negation. Figure 6.4 shows
sample WVF compositions, and the optimal policies and optimal value functions obtained from
them by maximising over goals. For example, their negations —|Q*. and —nQ*., result in policies
in which the agent determines how to unpack all the red and blue objects from the bin, without
further learning. This shows that the negation defined above does indeed have the expected
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semantics. The figure also shows that arbitrary disjunction, conjunction, and negation of WVFs
also produce WVFs with the desired semantics.

6.3 Boolean WVF algebra

While the De Morgan WVF algebra allows us to specify arbitrary disjunction, conjunction,
and negation of WVFs, it does not in general represent the full desired properties of logic. In
particular, the WVF compositions do not always satisfy the laws of the excluded middle and
of non-contradiction. This is because the De Morgan WVF algebra allows for WVFs obtained
from non-Boolean tasks—that is, tasks with non-binary rewards. In this section, we show that
by restricting the WVFs to those of Boolean tasks, we obtain the full logic on WVFs.

To achieve this, we first redefine — over Q" as follows:

~(Q)(.) = {QEUP(-) if[Q() — Qinr() <1Q°() — Qspp()] W) eSxGxA

Qiyp(.) otherwise,

The intuition behind this re-definition of the negation operator is as follows: since each goal
is either desirable or not, the optimal world value function Q*(s, g, a) is either Q% p(s, g, a)
or Qixr(s,g,a). Hence, if Q*(s, g,a) is closer to Q} (s, g, a), then its negation should be
Q% p(s,g,a), and vice versa. For tasks in M, this is equivalent to the previous definition of —
for optimal Q-value functions, but it will give us tight bounds when composing e-optimal WVFs
(see Theorem 6.5).

Proposition 6.6. Let (M, V, A\, =, Mgsyp, MinF) be a Boolean algebra of goal-reaching tasks,
and let Q" be the set of optimal WVFs of tasks in M. Then (Q*,V,\, =, Q%yp, Qinp) is a
Boolean WVF algebra.

Proof. Let Q}, ,Qj,, € Q" be the optimal world action-value functions for tasks My, M, € M
with reward functions R);, and R,;,. We show that —, \V, A satisfy the Boolean properties (i) —
(vii).

(i)—(v): These follow directly from the properties of the inf and sup functions.

(vi): Forall (s,g,a)inS X G X A,

(Qsup N Qi )(s,9,0)
= inf{QgUP(Sv g, a)a Q?Ml (87 g, a)}

_ inf{QikS‘UP(sv 9, a)? Q?;‘UP(S? 9, a)}7 if Ry, (97 a, S/) = RMSUP (97 a, 8/) vad,s
inf{QgUP(Sv 9, CL), Q?NF(Sa 9, CL)}, otherwise.

= QEUP(S’ 95 CL), if RMl (ga CL/, 3/) = RMSUP(Q? a/’ S/) A CL/, s
Qinp(s,g,a), otherwise.

= Q}(\/jl (Sa g, a)> since RMl (g, a/a 3,) € {RMINF (gv CL,, Sl)a RMSUP (97 CL,, 3/)} v a,; s'.
Similarly, Q5 p V Qhy, = Qsyps Qine A Qly, = Qivr and Qiyr V Qi = Q-
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(vii): Forall (.)inS X G x A,

Qi A=Qin) ()

= inf{Qj, (), ~ Qi ()}

_ {mf{QiNF(.» Qivp()} if1Q7() = Qinp()] <1Q7() — Qiup()
inf{Q%yp(.), Qiyr()} otherwise,

= Q?NF()

Similarly, Q3 V —Q}s, = Qsyp-

Having established a Boolean algebra over tasks and WVFs, we show that they are homomorphic.
As aresult, if we can specify a task under the Boolean algebra, we can immediately obtain the
optimal WVF for the task.

Theorem 6.3. Let (M, V, A, —, Mgsyp, M nF) be a Boolean algebra of goal-reaching tasks,
and let (Q*,V, N\, =, Q5 p, Qi nr) be the corresponding Boolean algebra of WVFs. Let H

M — Q be any map from M to Q" such that H(M) = Q3 for all M in M. Then H is a
homomorphism.

Proof. Let My, My € M. Then forall (s,g,a)inS X G x A,

>):

QiMl (57 g7 a)

_ QEUP(Svga CL), if RﬁMl(g,a/,Sl) = RMSUP(gaalasl) v(l/,S/
Qiyp(s,g,a), otherwise.

_ QZ’UP(S?ga CL), if RM1(g>a/>S,) = RMINF(g7a’/7S/) VGI,S/
Qiyp(s,g,a), otherwise.

= QZ’UP(S’g’a)’ ifQﬂMl(S’g’a) :Q}‘NF(Sagaa)
Qiyp(s,g,a), otherwise.

_ Qsyp(s,g,a), if \QM(S,Q,&) — Qinp(s,g9,a0)] < ‘Qj\/ll(s’g’a> — Qiyp(s.g,a)l
Qiyrp(s,g,a), otherwise.

=—Qjy, (s,9,a).
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(ii):

Q}kwl\/Mg(S? g7 a’)

= QgUP<S7g7a)’ if RM1VM2(g7a/7S/) - RMSUP(g7a/)SI) Va/7 s
Qinrp(s,g,a), otherwise.

_ Qingp(&g,a), if maX{RM1 (gva/vsl)’RM2(g7a/:SI>} = RMSUP(g7a//>S/) VCL/7S’
Qinp(s,9,a), otherwise.

= QgUP(S7g7a)’ lf maX{Q}(\/f1<S7g7a)vQ}k\/lg(sagaa)} = Q*SUP(Saga CL)
Qinp(s,9,a), otherwise.

= maX{Q}le (8797 CL), Qj\dg(svgv CL)}
= (Qiy, V Qip,) (5,9, 0).

(iii): Follows similarly to (ii).

]

Given that the algebraic structures of goal-reaching tasks and WVFs are homomorphic, any
task that is specified according to the task algebra can be immediately solved according to the
corresponding WVF algebra. We now show that for the case of a Boolean WVF algebra, we
can immediately construct optimal WVFs directly from a set of desired goals. We do this by
showing that the WVF and power set Boolean algebras are in fact isomorphic. Consider the
mapping F' between the set of WVFs Q™ and the power-set P(G), given by

F: PG — QF
H— Qj, where Q;,: SxGxA—R

(5,9,a) — Qtyp(s,g,a), ifgeH
- Qinr(s,g,a), otherwise.

F is clearly an isomorphism since each g € H defines, and can be defined by, each ¢’ € G that
gives Qj,(s, 9, a) = Q5yp(s, g, a)V (s,a) € S x A.

The isomorphism between a Boolean WVF algebra and the power-set Boolean algebra gives us
the following important result.

Theorem 6.4. Let (M, V, A\, =, Msyp, MinF) be a Boolean algebra of goal-reaching tasks,
and let Q" be the set of optimal WVFs of tasks in M. Then the Boolean algebra on Q" is
isomorphic to the Boolean algebra on M.

This illustrates how the base knowledge an agent needs to act optimally in an environment for any
future goal-reaching task can be constructed rather than learned—if there is an efficient way of
doing that construction (for example when |G| is finite and relatively small). All that is required
to be learned are two WVFs: the lower bound WVF Q7 and upper bound WVF Q% p.
Precisely, for any task M with desirable goals H (goals such that Ry,(s, a,g) = Rsup(s,a,g)),
we have for all (s, g,a):

Qi (s,9,a) = Qgyp(s,g,a) if (g € H) else Qi (s, g,a)
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Figure 6.5: The Boolean composition (top row) of learned WVFs in the bin packing domain. The
corresponding value functions and policies in the bottom row are obtained by acting greedily
over their Q-values per goal.

Experiment 6.3. Consider the simple bin packing domain used in Example 3.4 where the goal
rewards are restricted to Ry = 0 or Ryax = 1. The internal rewards are 0 and the goal
rewards are 0 for undesired terminal states and 1 for desired ones. The discounting used is
v = 0.95.

We train an agent on the tasks B and B (as described in Example 3.4), producing the respective
WVFs Qg and Qg. We are now able to perform zero-shot composition of any logical combination
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Figure 6.6: Hasse diagram of the Boolean sub-algebra generated by Qg and Qg

of M and B. This is demonstrated in Figure 6.5. As usual, we observe that the WVFs have the
same structure as the rewards in the terminal set and encode how to achieve them. Notice how for
the lower bound WVF (the result of meaningless composition), the optimal policy is to achieve
any terminal state (Figure 6.5f). This is because all terminal states are equally undesirable
(they have the lowest values). Figure 6.6 shows the Hasse diagram of the Boolean sub-lattice
generated by Qg and Qg.

Finally, we show that while optimal WVFs are more expensive to learn than optimal standard
value functions, the trade-off with the compositional explosion of skills justifies this cost. We
demonstrate this in the bin packing domain where we need to learn only 7 base tasks (Figure
6.8 shows the learned WVFs), as opposed to 121 for the disjunctive case (since there are 121

goals). Figure 6.7 shows results in comparison to the disjunctive composition of van Niekerk et
al. [2019].

6.4 Composition with function approximation

In this section, we demonstrate that our compositional approach can also be used to tackle
domains where function approximation is required. In this setting, it is likely that learned value
functions will be suboptimal owing to generalisation error. However, we show in Theorem 6.5
that the simplicity of the lattice algebra operators—supremum for disjunction and infimum for
conjunction—enables disjunctions and conjunctions of e-optimal WVFs without any decrease
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in optimality. Furthermore, we show that the negation of an e-optimal WVF leads to only a
constant decrease in optimality for a De Morgan algebra, and no decrease in optimality for a
Boolean algebra.

Theorem 6.5. Let M be a set of tasks and Q" the set of optimal WVFs for tasks in M. Denote
Q3 as the e-optimal WVF for a task M € M such that

1Q%,(s,9,a) — Q%y(s,g,a)| <€ forall (s,g,a) €S x G x A.
Then for all My, My in M and (s, g,a) inS X G x A,
(i) [Q*Ml \/ Q?WQ](S’g’ a’) - [Q}k\il \/ Q?MQ:I(S797 a) S €
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(i) |[Qis, A Qi) (5. 9:) = Qs A Qig)(s.9.0)| < €

(iii) if (M, V, A\, =, Msyp, MinF) is a De Morgan algebra,
Qi 5.9.0) = Qi (59,0 < 3¢
(iv) if (M, V, A, =, Msup, MinF) is a Boolean algebra,
Qi (5,9.0) = ~Qiy (5.9,0)| < ¢

Proof. (i):
Qi v Qig)(s.9.0) = Qi V Qi )(5,9. )|

—=| sup  Qils,9,0)— sup  Qjls,9,a)
ME{Ml,MQ} ME{Ml,MQ}

< sup Q&(S,g,a)—Q*M(&g,a)’
ME{Ml,MQ}

<e€

(ii):

1Qir, A Qi )(5,9,0) = [Qir, A Qi (5.9, )|

= inf 2 (s,9,a) —  inf (8,9, a
’Me{MhMQ}QM( g,a) Me{Ml,MQ}QM( g, a)

< inf * (s,9,a) — Q% (s, ,a’

_Me{11\41,M2} Qi (s,9,a) — Qi (s, 9, a)

<e€

(iii): Let (M, V, A, -, Msyp, Mnr) be a De Morgan algebra. Then,

Qi (5.9.0) = ~Qiy, (5.9.0)]

= [ (Qsup(s,9,a) + Qinr(s,9,0)) — Qi (5, 9,0)—
(Qavp(s9.) + Qinels,9.0)) = Qi (5..9. )]

= | (Qiupls 9:0) = Qipls.9,0)) + (Qir(s.9,0) = Qine(s,9,0)) +
(Qiis(5:9.0) = Qi (5.9.)) |

< |Qiup(s,9.0) = Qiyp(s,9.0)| + [ Qini(s 9.0) = Qs 9, )| +
’Q*Ml(s,g, a) — Qiy, (5, 9, a)‘

< 3¢

&9



(iv): Let (M, V, A\, —~, Msup, M nr) be a Boollean algebra.

)_'Q}(Ml (87 g, a) - ﬁ(3>]k\41 (87 g, CL)
Q%up(s, g.a) — _'(:Q?NF(S’Q’CL”? if Q*M1 = Qinr(s,9,a)
|Qinr(s:9,a) — 7Qiyp(s, g,a)|, otherwise.

(
{‘QEUP(& g,a
(

‘Q?NF 5,0,a

a QEUP(S’g’a”’ if Qiy, = Qinr(s, 9,0)
— Qinr(s,g9,a)|, otherwise.

IN

€.
[

Experiment 6.4. We consider a continuous 3D Four Rooms environment where the ant robot of
Duan et al. [2016] must navigate to the center of specific rooms. The environment is simulated
in MuJoCo [Todorov et al. 2012 ] with a 29-dimensional continuous state space (representing
the position and velocity of the ant’s joints) and an 8-dimensional continuous action space.
Figure 6.9 shows a rendered view of the environment.

Figure 6.9: The layout of the MuJoCo Four Rooms domain with a quadruped ant robot. The
spheres indicate goals the agent must reach (center of the two top rooms in this case).
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Since this environment is particularly challenging (as a result of the large state space and
the ant’s non-linear and highly unstable dynamics), we use dense rewards on internal states
(similarly to Peng et al. [2019]) to facilitate learning, and limit the terminal states of each
task to only the desired ones (that is, the environment terminates only when the ant is e-close
to the center of a desired room). We use soft actor-critic with automated entropy adjustments
(SAC-AEA) [Haarnoja et al. 2018b] as the off-policy RL algorithm to learn the world values for
each goal. The architectures used for the policy and action-value networks are as follows:

1. Three fully-connected linear layers for the policy networks: (a) Layer 1 has input size
29 and output size 256 and uses a ReLU activation function. (b) Layer 2 has input size
256 and output size 256 and uses a ReLU activation function. (c) Layer 3 has input size
256 and output size 16, representing the mean and standard deviation of the Gaussian
distribution over actions.

2. Three fully-connected linear layers for the action-value networks: (a) Layer 1 has input
size 37 and output size 256 and uses a ReLU activation function. (b) Layer 2 has input
size 256 and output size 256 and uses a ReLU activation function. (c) Layer 3 has input
size 256 and output size 1 with no activation function.

We first learn to solve the two base tasks: navigating to the top rooms, and navigating to the
left rooms. The resulting trajectories from the learned WVF's are illustrated by Figure 6.10. We
then demonstrate that zero-shot compositions do indeed still hold by showing compositions
characterised by disjunction, conjunction and exclusive-or. Figure 6.11 shows the resulting
trajectories.

(@) Qr ) Qr

Figure 6.10: Learned base tasks for the MuJoCo environment. We show the trajectories obtained
from the learned WVFs for each base task from different starting states.

6.5 Related works

Skill composition is a promising form of transfer learning that has garnered significant attention
in recent years [Mendez and Eaton 2023]. It involves combining optimal policies or value
functions from previously learned tasks to derive solutions for new tasks. Broadly, these methods
fall into two categories in the litterature:
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(@) QL VvV Qr (b) QL A Q7 © QLY Q7

Figure 6.11: An example of Boolean algebraic composition using the learned WVFs with dense
rewards. We show the trajectories obtained from different starting states.

Zero-shot Composition: Todorov [2009] demonstrated that for Linearly-solvable Markov
Decision Processes (LMDPs), composed value functions can be obtained without further learning
through weighted addition of other tasks. However, this approach is confined to tabular cases with
known dynamics. van Niekerk ef al. [2019] extended this work by introducing O R composition,
enabling the derivation of optimal action-value functions without further learning. Haarnoja et
al. [2018a] and van Niekerk er al. [2019] also explored AN D compositions, approximating
composite task solutions by averaging the value functions of constituent tasks. However, all
these approaches do not consider at full set of logical compositions simultaneously.

Few-shot Composition: Sahni et al. [2017] proposed ComposeNets, leveraging neural networks
to learn linear temporal logic operators for composite skills, facilitating zero-shot generalization
and subsequent optimal task solving after few iterations. Other approaches leverage succes-
sor features (SF) and generalized policy improvement (GPI) for few-shot task solving with
convergence guarantees. Additionally, Hunt et al. [2019] demonstrated zero-shot AN D compo-
sition, allowing the composition of policies without additional exploration in max-entropy-RL
by introducing divergence correction terms. Peng et al. (2019) introduced a few-shot learn-
ing approach, enabling policy composition via multiplication of base skills, although lacking
theoretical underpinnings.

Finally, recent advancements by Nangue Tasse et al. [2020b] extended zero-shot optimal
composition to include all logical operators OR, AN D, and NOT, paving the way for broader
application in transfer learning. In this chapter, we have extended this work to more general
goal-reaching tasks, with new results on the sub-optimality of the composition operators when
the learned WVFs are also sub-optimal.

6.6 Conclusion

In this chapter, we have made significant strides in formalising the logical composition of
world value functions (WVFs) for goal-reaching tasks. Building upon the foundation laid out in
previous chapters, where we extended the framework of Nangue Tasse et al. [2020b] to formalise
the logical composition of tasks with arbitrary rewards, we have shown that WVFs encode
enough information to solve new goal-reaching tasks without further learning. Importantly,
we also showed that they are homomorphic to the ones over tasks. This enables WVFs to be
treated algebraically in a similar way to sets in set theory, and propositions in propositional
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logic. Remarkably, we also showed that these compositions work in the function approximation
setting with little to no loss in optimality even when WVFs are sub-optimal. These findings pave
the way for more efficient and effective approaches to mastering arbitrary goal-reaching tasks in
reinforcement learning settings. In the next chapters, we will leverage this ability to improve
sample efficiency and generalisation in RL.
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Chapter 7

Generalisation in lifelong learning

This chapter is based on the published work
“Generalisation in Lifelong Reinforcement Learning through Logical Composition”
[Nangue Tasse et al. 2023a], in collaboration with Steven James, and Benjamin Rosman.

As we discussed in the introduction (Chapter 1), a major challenge in RL is building general-
purpose agents that can use existing knowledge to quickly solve new tasks in their environment.
However, the previous chapters have only looked at solving single tasks (Chapters 3 and 4) or
augmenting an agent’s ability to solve multiple tasks—given instructions on exactly how to
combine learned skills to solve the current task (Chapters 5 and 6). This is ultimately a fatal
flaw, since learning to solve complex, real-world tasks from scratch for every task of interest is
typically infeasible. Similarly, it is also impractical to assume that an agent is always equipped
with sufficient skills to solve new tasks, let alone instruct the agent on the correct composition of
skills to use for every single task. Hence, the question of interest is then: after learning n tasks
sampled from some distribution, how can an agent transfer or leverage the skills learned from
those n tasks to improve its starting performance or learning speed in task n + 1?

In this chapter, we answer this question by leveraging logical composition (Chapter 6) to create
a framework that enables an agent to autonomously determine whether a new task can be
immediately solved using its existing abilities, or whether a task-specific skill should be learned.
In the latter case, the proposed algorithm also enables the agent to learn the new task faster by
generating an estimate of the optimal policy. We make the following main contributions:

(i) Sample efficiency (Section 7.1.1): We propose a transfer learning method where the
agent first infers the specification of the current task based on the skills it currently has,
then uses it to estimate the optimal WVE. Importantly, we bound the performance of the
transferred policy on a new task, and also compare it to previous work in the discounted
setting.

(i) Generalisation (Section 7.1.1): We propose a lifelong RL algorithm named SOPGOL
(Sum Of Products with Goal-Oriented Learning). SOPGOL enables agents to iteratively
solve tasks as they are given, while at the same time constructing a library of skills that can
be composed to obtain behaviours for solving future tasks faster, or even without further
reinforcement learning. Importantly, we give bounds on the necessary and sufficient
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number of tasks that need to be learned throughout an agent’s lifetime to generalise over a
distribution.

(iii)) Empirical evaluations: We verify our approach in a series of experiments, where we
perform transfer learning both after learning a set of base tasks, and after learning an
arbitrary set of tasks. We also demonstrate that, as a side effect of our transfer learning
approach, an agent can produce an interpretable Boolean expression of its understanding
of the current task. Finally, we demonstrate our approach in the full lifelong setting where
an agent receives tasks from an unknown distribution. Starting from scratch, an agent is
able to quickly generalise over the task distribution after learning only a few tasks, which
are sub-logarithmic in the size of the task space.

7.1 Lifelong transfer through composition

In lifelong RL, an agent is presented with a series of tasks sampled from some distribution D.
The agent then needs to not only transfer knowledge learned from previous tasks to solve new
but related tasks quickly, but it also should not forget learned knowledge in the process. We
formalise this lifelong learning problem as follows:

Definition 7.1. Let D be an unknown, possibly non-stationary, distribution over a set of tasks
M(S, A, P,7, Ry). The lifelong learning problem consists of the repetition of the following
steps fort € N:

1. The agent is given a task M, ~ D(t),
2. The agent interacts with the MDP M, until it is e-optimal in M, ..., M.

This formulation of lifelong RL is similar to that of Abel et al. [2018]; the main difference is that
we do not assume that D is stationary, and we explicitly require an agent to retain learned skills.
Since we aim to investigate how logical composition can be leveraged to address the lifelong
learning problem, we focus on tasks where an agent is required to reach a set of desirable goals
in a goal space G C S (the environment terminates once a goal state is reached). We hence
consider the set of tasks M such that the tasks are in the same environment—described by a
background MDP (S, A, P, v, Ry)—and each task can be uniquely specified by a set of desirable
and undesirable goals:

M(S, A, P, Ro) := {(S, A, P,7,R) [ Va € A, R(s,a) = Ro(s,a) Vs € S\ G;
R(g,a) = Ry € {Rviv, Rmax} Vg € G}

As discussed in Chapter 1, one of the main goals in the lifelong setting is that of transfer [Taylor
and Stone 2009]. We add an important question to this setting: how many tasks should an
agent learn during its lifetime in order to generalise over the task distribution? In other words,
how many tasks should it learn to be able to solve any new task immediately? While most
approaches focus on the goal of transfer, the question of the number of tasks is often neglected
by simply assuming the case where the agent has already learned n tasks [Abel ef al. 2018;
Barreto ef al. 2018]. Consider, for example, a task space with only |G| = 40 goals. Then, given
the combination of all possible goals, the size of the task space is |[M| = 2/9l ~ 10'2. If D is a
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uniform distribution over | M|, then for most transfer learning methods an agent will have to
learn most of the tasks it is presented with, since the probability of observing the same task will
be approximately zero. This is clearly impractical for a setting like RL, where learning methods
often have a high sample complexity even with transfer learning. It is also extremely memory
inefficient, since the learned skills of most tasks must be stored.

7.1.1 Transfer between tasks

In this section, we leverage the logical composition results to address the following question
of interest: given an arbitrary set of learned tasks, can we transfer their skills to solve new
tasks faster? As we will show in Theorem 7.1, we answer this question in the affirmative.
To achieve this, we first note that each task M € M can be associated with a binary vector
T € {0,1}/9" which represents its set of desirable goals, as illustrated by the tasks in Table 7.1.
The approximation 7" of this task representation can be learned just from task rewards (R (s, a))
by simply computing 7'(s) = 1, (s.a)=Ryuay 2t €ach terminal state s that the agent reaches. We
can then use any generic method, such as the sum-of-products (SOP), to determine a candidate
Boolean expression (B pxp) in terms of the learned binary representations T = {Tl, .. T )
of a set of past tasks M = {My, ..., M,,} C M. An estimate of the optimal Q-value functlon
of M can then be obtained by composing the learned Q-value functions Q; = {Q’{, ey Q:‘L}
according to Bgxp. Theorem 7.1 shows the optimality of this process.

Theorem 7.1. Let M € M be a task with reward function R, binary representation I and opti-
mal world action-value function Q. szen e-approximations of the binary representations T, =
{Ty, ..., T,.} and optimal Q-functions @, = {Q%, ..., Q*} for n tasks M = { M, ..., M,} C M,
let

*

TFr = BEXP(,i;z) and Qr = BEXP(Q ),
where Bgx p is derived from T, and T using a generic method F.
Define 7(s) € arg max,. 4 Q5 where Q r '= max,eg Qr(s, g,a). Then,
(i) Q" = Q"Moo < 15 ((Irrr + IRg{R,)6) Ba +6),

(ii) if the dynamics are deterministic,

Q" — QFlle < (Irzr,)Ra + €,

where 1 is the indicator function, R,(s,a) = R(s,g,a), Ra = Ryax— Ry, and || f — h||o =
maxs g, | f(s,9,a) — h(s,g,a)l.

Proof. We first show that when the inferred task representation 7'z is not the same as the true
task representation 7', the resulting estimate of the optimal world action-value function can be
bounded by Ra. Thatis, ||Q* — Qrllcc < (117, )Ra + €.

|Q*(Svgva) - Q]:(Svgva)| = |Q*(S7g7a) - Q}(Saga CL) + Q}(S7g7a) - Q}—(Saga CL)|
< |Q*(Sagaa) - Q;—'(Svgva” + |Q.>;-'(Sagaa) - Qf(‘S?g?a)’
|Q*(Sag7@) - Q;—'(Sagaa)’ + €.

VAN
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If T = Ty, then Q*(s,g,a) = Q¥%(s,g,a), and we are done. Let 7' # T». Without loss of
generality, let Q*(s, g,a) = Q%yp(s, 9,a) and Q% (s, g,a) = Qixr(s, g, a). Then,

|Q*(Sa g, CL) - Qi;:(sv g, a)’ S |Q*SUP<S> g, a) - Q;NF(Sa g, a)l
< Ra.

(i): Now note that each g in G can be thought of as defining an MDP M, := (S, A, P, R,, )
with reward function Ry(s,a) := R(s, g, a), optimal policy 7 (s) = 7*(s, g) and optimal
Q-value function Q”g(s, a) = Q*(s,g,a). Then this proof follows similarly to that of
Theorem 2 in Barreto et al. [2017],

Q*(Sv a) - Qﬂ(87 CL)
< Q*(s,a) — Q™ (s,a) + %((IT;ATF)RA +¢) ([Barreto er al. 2017, Theorem 1])

2 2
< —1 — H;%X |R(8, a) — RQ(S, a)| + m((lT;éTf)RA + 6)

(using Lemma 1 in Barreto et al. [2017])

2 2
S 1— ry(lR?éRg)RA + m((leT}‘)RA -+ 6)
(Since rewards only differ in G where R(s, a), Ry(s,a) € { Rvin, Rumax } for s € G)

2
< ——((Arpry + 1nzr,)Ra + €).

,_.
)

Hence,

2 :
HQ* - QWHOO < m((lT;éTf + mglIl 1R7£R,;>RA + 6)
2
T ((rems + Ingingyg ) Fia +€)
(Since min 1z, = 0 only when R € {R,}(g| ).
g

IN

(ii):
|Q*<S7a) - Q}‘(S,CL)| = ]mgaxQ*(s,g,a) - Il'l;lXQf(S,g,CL”

< max 1Q"(s,9,a) — Qz(s, g,a)|
< (Irzry)Ra + e

]

Theorem 7.1(i) states that if Qx is close to optimal, then acting greedily with respect to it
is also close to optimal. Interestingly, this is similar to the bound obtained by Barreto et al.
[2018] (Proposition 1) for transfer learning using generalised policy improvement (GPI), but
stronger.! This is unsurprising, since 7(s) € arg max, 4, max,eg Qz(s, g, a) can be interpreted

'See Section 1.4 of the appendix for a detailed discussion of this with the simplification of the bound in
Proposition 1 [Barreto et al. 2018] to the same form as Theorem 7.1(i).
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as generalised policy improvement on the set of goal policies of the world value function
Q. Importantly, if the environment is deterministic, then we obtain a strong bound on the
composed value functions (Theorem 7.1(i1)). This bound shows that transfer learning using
logical composition is e-optimal—that is, there is no loss in optimality—when the new task
is expressible as a logical combination of past ones. With the exponential nature of logical
combination, this gives agents a strong generalisation ability over the task space—and hence
over any task distribution—as we will show in Theorem 7.2.

7.1.2 Comparison with GPI

We first restate Proposition 1 of Barreto er al. [2018] here.

Proposition 7.1 ([Barreto ef al. 2018]). Let M € M and let Qj; be the action value function of
an optimal policy of M; € M when executed in M; € M. Given approximations {Q;, ..., Q7" }
such that |Q;” — Q}’| < eforalls,a € S x A, and j € {1,...,n}, let

7(s) € argmaxmax Q. (s, a).
a J

then,

* g 2 :
Q" — Q[ < E(IIR = Rilloo + min [[R; — Rlloo +€),

where QQ* is the optimal value function of M, QT is the value function of win M, and || f —h||» =
maXs.g,a ’f(S, g, a) - h(87 g, G/)’

We can simplify the bound in Proposition 7.1 as follows:

« - 2 .
Q" = Q"lloo < T— 7(||R — Rilloo +min[[R; — Rjlloo +€)
2 .

< :((lRyéRi)RA + min | Ri — Ryl +€)

(Since rewards only differ at s € G where R(s,a), R;(s,a) € { RviN, Rmax }
2

S 7((1R¢Ri)RA + (mindgp, ) Ra + €)

2
m((lryéRi)RA + (Mrig(r;1.)Ba +€)
(Since mjin 1g,+r, = 0 only when R; € {R;},,)

IN

2
< 7= ((Mrer + 1rigiry, ) Ba + ).

)

where 1 is the indicator function, and Ra := Rymax — Rmin. We can see that this bound is similar
to that of Theorem 7.1(1) but weaker. This because:

(1) The first term of this bound (1zg,) requires that reward function of the current task ([?)
be identical to that of a reference task (R;). In Barreto ef al. [2018], R; is taken as the
best linear approximation of R. In contrast, the first term of Theorem 7.1(i) (1747,) only
requires the current task to be expressible as a Boolean composition of past tasks.
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(i) The second term of this bound (1g,¢(r;},) requires that the reference task (the best linear
approximation to the current task) is exactly one of the past tasks. In contrast, the second
term of Theorem 7.1(1) (1r¢{r,} ) only requires the current task to have a single desirable
goal.

This suggests that we can can think of the logical composition approach as an efficient way
of doing GPI, one which leads to tight performance bounds on the transferred policy (Theo-
rem 7.1(i1)).

7.1.3 Generalisation over a task distribution

We leverage Theorem 7.1 to design an algorithm that combines the SO P approach with goal-
oriented learning to achieve fast transfer in lifelong RL. Given an off-policy RL algorithm <7,
the agent initializes its world value function Q, the task binary vector 7', and a goal buffer. At the
beginning of each episode, the agent computes Tsop and Qsop for T using the SO P method
and its library of learned task vectors and world Q-functions. It then acts using the behaviour
policy (e- greedy for example) of o/ with Qgop for the action-value function if Tsop = T and
Qsopr V Q otherwise.? If Tsop # T, the agent also updates Q for each goal in the goal buffer
using 7. Additionally, when the agent reaches a terminal state s, it adds it to the goal buffer
and updates 7T(s) using the reward it receives (T'(s) = 1p,, (s.a)=Ryay)- Training stops when the
agent has reached the desired level of optimality (or after n episodes in practice), after which
the agent adds the learned T and Q to its library if Tsop # T. We refer to this algorithm as
SOPGOL (Sum Of Products with Goal-Oriented Learning).

Algorithm 8 shows the full pseudo-code for SOPGOL. Here, SOP (7~‘ ~) is the classical sum
of products method in Boolean logic. Given a list of binary vectors 7 = [T1, ..., T}], a Boolean
expression for a new binary vector 7' is obtained as follows:

1. Identify all rows of T with a 1.

2. For each such row: Make a product (conjunction) of all the input variables and make the
negation of each variable with a O in this row.

3. Take the sum (disjunction) of all these product terms.

The output of SOP is a function Bgxp that takes in |7'| variables, and applies disjunctions,
conjunctions and negations to them according to the Boolean expression obtained above.

When G is finite, we show in Theorem 7.2 that SOPGOL generalises over any unknown task
distribution after learning only a number of tasks logarithmic in the size of the task space.
The lower bound is [log|G|], since this is the minimum number of tasks that span the task
space, as can be seen in Table 7.1 (top) for example. The upper bound is |G| because that is
the dimensionality of the task binary representations {0, 1}/9!. Since the number of tasks is

2Since Qsop V Q = max{Qsop, Q} it is equivalent to GPI and hence is guaranteed to be equal or more
optimal than the individual value functions. Hence using Qsop V Q in the behaviour policy gives a straightforward
way of leveraging Qgsop to learn Q faster.
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Algorithm 8: SOPGOL

Input  :off-policy RL algorithm .7, /* e.g DQN =/
task MDP M,
set of e-optimal task binary representations T,
set of e-optimal Q-value functions Q

Initialise : 7 : G — {0,1}, Q : S x G x A — R according to <7, goal buffer G with
terminal states observed from a random policy

while Q is not converged do
Initialise state s from M

BEXP <— SOP(%, T)
Tsop, Qsop <_~BEXP(T)> BE)SP(Q*>
Q < Qsopif T'=Tsop else Q V Qsop

g < argmax (max Q(s, g, a))
g'€G acA
while s is not terminal do
Select action a using the behaviour policy from 7: a < 7 (s, g) /* e.g
e—greedy */
Take action a, observe reward r and next state s’ in M
if T # Tsop then
foreach ¢ € G do
r < Rywifg # s eGelser
Update Q with (s, ¢, a,r, s') according to .o/
if s is terminal then
T(S) — 17"=RMAX
G <+ GU{s}
else
s« s
BEXP < SOP(T, T)
T,Q« (T,Q) T = Bpxp(T) else (TU{T}, QU{Q})
return 7', Q

| M| = 2!91, we have that the upper bound |G| = log| M| is logarithmic in the size of the task
space.

Theorem 7.2. Let D be an unknown, possibly non-stationary, distribution over a set of tasks
M(S, A, P,v, Ry) with finite G. Let &/ : M — Q" be any map from M to Q" such that
o (M) = Q*Ryy forall M in M. Let

Tii1, Q). = SOPGOL(/, My, T;, ©;) where M, ~ D(t) and Ty = Q) = @ Vt € N,

Then,
[log|G[] < lim N, <G| where N, = |Ti| = [Q,].
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Proof. Let T, be the approximate binary representation of task )/; learned by SOPGOL. We
first note that SOPGOL returns 7; U {7} } only if 7} is not in the span of 7;. That is,

Tivr = TLUA{TY iff Ty # Bpxp(T;) where Bpxp = SOP(T;, T)).

Igence, it is sufficient to show that the number, N, of linearly independent binary vectors,
T € {0,1}9, that span the Boolean vector space [Subrahmanyam 1964], GF(2)!9!3 is bounded
by

[log|G[] < N <G|

This follows from the fact that [log |G|] is the size of a minimal set of generators for GF'(2)!9!
(as can easily be seen with a Boolean table), and |G| is its dimensionality.

]

Interestingly, Theorem 7.2 holds even in the case where a new task is expressible in terms of
past tasks (T'sop = T), but we wish to solve it to a higher degree of optimality than past tasks.
In this case, we can pretend Tsop # T and learn a new Q-function to the desired degree of
optimality. We can then add it to our library, and remove any other skill from our library (the
least optimal for example).

7.2 Experiments

Goas ' @ BE 1 O B 10 E108 1 O =
7, 1.0 1 0 1 0 1 0 1 0 1 0 1 0 1
T, 01 1 00 1 1 0 0 1 1 0 0 1 1
.. 0 0 0 1 1 1 1.0 0 0 0 1 1 1 1
7, 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Goas 1 @O B 1 @O B0 E108 1?0 =
7, 00 0 00 0 00 0 0O 0 0 0 I
7, 0 0 1 0 1 1 1 0 1 1 0 0 1 0 O
7, 1 1 0 1 0 0 0 1 0 1 1 0 0 1 1

Figure 7.1: PICKUPOBJ domain. Table 7.1: Binary representation for base (top) and test
The red triangle represents the (bottom) tasks. 0 or 1 corresponds to a goal reward of
agent. RMIN or RMAX-

7.2.1 Transfer after pertaining on a set of tasks

In this section, we compare SOPGOL to SOPGOL-transfer, or to SOPGOL-continual. SOP-
GOL-transfer refers to when no new skill is learned and SOPGOL-continual refers to when

3GF(2) is the Galois field with two elements, ({0, 1}, +, -), where + := XOR and - :== AND.
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a new skill is always learned using the SO P () estimate to speed up learning, even if the new
task could be solved zero shot. Since SOPGOL determines automatically which one to use, we
compare whichever one it chooses with the other one in each of our experiments. We note that
the results in this section are only demonstrative of our theoretical results, given that they will
be averaged over only 4 runs.

Environment

We consider the PICKUPOBJ domain from the MINIGRID environment [Chevalier-Boisvert et
al. 2018], illustrated by Figure 7.1, where an agent must navigate in a 2D room to pick up objects
of various shapes and colours from pixel observations. This type of domain is prototypical in the
literature [Nangue Tasse et al. 2020a; Barreto et al. 2020; van Niekerk et al. 2019; Abel et al.
2018], because it allows for easy demonstration of transfer learning in many-goal tasks.

The PICKUPOBJ environment is fully observable, where each state observation is a 56 x 56 X 3
RGB image (Figure 1). The agent has 7 actions it can take in this environment corresponding to:
1 - rotate left, 2 - rotate right, 3 - move one step forward if there is no wall or object in front, 4 -
pickup object if there is an object in front and no object has been picked, 5 - drop the object in
front if an object has been picked and there is no wall or object in front, 6 - open the door in
front if there is a closed-door in front, and 7 - close the door in front if there is an opened door
in front.

In this domain, there are |G| = 15 goals each corresponding to picking up objects of 3 possible
types—box, ball, key—and 5 possible colours—red, blue, green, purple, and yellow (illustrated
in Table 7.1). Hence a set of [log, |G|| = 4 base tasks can be selected that can be used to
solve all 219/ = 32768 possible tasks under a Boolean composition of goals. For each task, each
episode starts with 1 desirable object and 4 other randomly chosen objects placed randomly in
the environment. The agent is also placed at a random position with a random orientation at the
start of each episode. The agent receives a reward of -0.1 at every timestep, and a reward of
2 when it picks up a desirable object. The environment transitions to a terminal state once the
agent picks up any object and the agent observes the picked object. The agent receives a reward
of 2 when it picks up desired objects, and —0.1 otherwise.

For all of our experiments in this section, we use deep Q-learning [Mnih et al. 2015] as the RL
method for SOPGOL and as the performance baseline.

Network architecture and hyperparameters

In our function approximation experiments, we represent each world value function Q* with a list
of |G| DQNs, such that the value function for each goal Q;(s, a) = Q*(s, g, a) is approximated
with a separate DQN. The DQNs used have the following architecture, with the CNN part being
identical to that used by Mnih et al. [2015]:

1. Three convolutional layers:
(a) Layer 1 has 3 input channels, 32 output channels, a kernel size of 8 and a stride of 4.

(b) Layer 2 has 32 input channels, 64 output channels, a kernel size of 4 and a stride of
2.
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(c) Layer 3 has 64 input channels, 64 output channels, a kernel size of 3 and a stride of
1.

2. Two fully-connected linear layers:
(a) Layer 1 has input size 3136 and output size 512 and uses a ReL.U activation function.
(b) Layer 2 has input size 512 and output size 7 with no activation function.

We used the ADAM optimiser with batch size 256 and a learning rate of 1073, We started
training after 1000 steps of random exploration and updated the target Q-network every 1000
steps. Finally, we used e-greedy exploration, annealing e from 0.5 to 0.05 over 100000 timesteps.

Finally, we used the same DQN architecture and training hyperparameters for the baseline in all
experiments.

Setup and results

We first demonstrate transfer learning after pretraining on a set of base tasks—a minimal set
of tasks that span the task space. This can be done if the set of goals is known upfront, by
first assigning a Boolean label to each goal in a table and then using the rows of the table as
base tasks. These are illustrated in Table 7.1 (top). Having learned the e-optimal world value
functions for our base tasks, we can now leverage logical composition for transfer learning
on test tasks. We consider the three test tasks shown in Table 7.1 (bottom). For each, we run
SOPGOL, SOPGOL-continual, and a standard DQN. Figure 7.2 illustrates the results where,
as predicted by our theoretical results in Section 7.1.1, SOPGOL correctly determines that
the current test tasks are solvable from the logical combinations of the learned base tasks. Its
performance from the start of training is hence the best.

Now that we have demonstrated how SOPGOL enables an agent to solve any new task in an
environment after training on base tasks, we consider the more practical case where new tasks
are not fully expressible as a Boolean expression of previously learned tasks. The agent in this
case is pretrained on a set of tasks that do not span the task space, {#,l, %}, corresponding
to the tasks of picking up green objects, blue objects, yellow objects, and keys. We then train
the agent with SOPGOL, SOPGOL-transfer, and a standard DQN on the same set of test
tasks considered previously (Table 7.1 (bottom)). The results in Figure 7.3 demonstrate how
SOPGOL now chooses to learn a task-specific skill after transfer, and hence outperforms
SOPGOL-transfer since the test tasks are not entirely expressible in terms of the pretrained
ones. Consider Figure 7.3a, for example. The test task is to pick up a yellow box, but the agent
has only learned how to pick up red objects, blue objects, yellow objects, and keys. It has
not learned how to pick up boxes. However, we note from the inferred Boolean expression
(]le) that the agent correctly identifies that the desired objects are, at the very least, yellow.
Without further improvements to this transferred policy (SOPGOL-transfer), we can see that
this approach outperforms DQN from the start. This is due to two main factors: (i) the transferred
policy navigates to objects more reliably, so takes fewer random actions; and (ii) although the
transferred policy does not have a complete understanding of which are the desirable objects, it
at least navigates to yellow objects, which are sometimes yellow boxes.

Finally, since SOPGOL is able to determine that the current task is not entirely expressible in
terms of its previous tasks (by checking whether Tspop = T), it is able to learn a new Q-value
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Figure 7.2: Episodic returns (top) and learned binary representations (bottom) for test tasks
M, My and Mj after pretraining on the base set of tasks M,, M,, M, and M,. The shaded
regions on the episodic returns indicate one standard deviation over 4 runs. The learned binary
representations are similarly averaged over 4 runs, and reported for the first 500 episodes.
The initial drop in DQN performance is as a result of the initial exploration phase where the
exploration constant decays from 0.5 to 0.05. The Boolean expressions generated by SOPGOL
during training for the respective test tasks are:
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Figure 7.3: Episodic returns (top) and learned binary representations (bottom) for test tasks M,
My and M3 after pretraining on the non-base set of tasks M,l, and & The shaded regions on the
episodic returns indicate one standard deviation over 4 runs. The learned binary representations
are similarly averaged over 4 runs, and reported for the first 500 episodes. The initial drop in
DQN performance is a result of the initial exploration phase where the exploration constant
decays from 0.5 to 0.05. The Boolean expressions generated by SOPGOL for the respective

test tasks are:

M, = —-mBA-EBA A%
My, = (WA-EA— )V(-EABA- ARV (-EA-EBA ARV (-BA- A-R),
My = (-WA-BA-R)V(-HA- )V (-EA- A-E).
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function that improves on the transferred policy. Additionally, its returns are strictly higher than
those of SOPGOL-transfer because SOPGOL learns the new Q-value function faster by using
Qsop V Q in the behaviour policy.

7.2.2 Transfer during lifelong learning

In this section, we consider the more general setting where the agent is not necessarily given
pretrained skills upfront, but is rather presented with tasks sampled from some unknown
distribution. We revisit the example given in Section 7.1, but now more concretely by using a
stochastic without function approximation.

Environment

We use the Four Rooms domain [Sutton ef al. 1999], where an agent must navigate in a grid
world to particular locations. The goal locations are placed along the sides of the walls and
at the centre of rooms (Figure 7.4). This gives a goal space of size |G| = 40 and a task space
of size [M| = 291 ~ 10'2. The agent can move in any of the four cardinal directions at each
timestep, but colliding with a wall leaves the agent in the same location. We add a 5th action for
“stay” that the agent chooses to achieve goals. A goal location only becomes terminal if the agent
chooses to stay in it. All rewards are 0 at non-terminal states, and 1 at the desirable goals. The
transition dynamics are stochastic with a slip probability (sp = 0.1). That is, with probability
1-sp the agent moves in the direction it chooses, and with probability sp it moves in one of the
other three chosen uniformly at random.

Figure 7.4: 40 goals Four Rooms domain with goals in green and the agent in red.

Setup and results

We demonstrate the ability of SOPGOL to generalise over task distributions by evaluating
the approach with the following distributions: (i) Dsgmpieq: the goals for each task are chosen
uniformly at random over G; (ii) Dyes;: the first [log, |G|] tasks are the base tasks, while the
rest follow Dggppieq. This distribution gives the agent the minimum number of tasks to learn
and store, since the agent learns the base tasks first before being presented with any other task.
(iii) Dyorsi: the first |G| tasks are each defined by a single goal that differs from the previous
tasks, while the rest follow D,peq. This distribution forces the agent to learn and store the
maximum number of tasks, since none of the |G| tasks can be expressed as a logical combination
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Figure 7.5: Number of policies learned and samples required for the first 50 tasks of an agent’s
lifetime in the Four Rooms domain. The shaded regions represent standard deviations over 25
runs.

of the others. We use Q-learning [Watkins 1989] as the RL method for SOPGOL, and Q-
learning with maz Q initialisation as a baseline. This has been shown by previous work [Abel
et al. 2018] to be a practical method of initialising value functions with a theoretically optimal
optimism criterion that speeds-up convergence during training. Our results (Figure 7.5) show
that SOPGOL enables a lifelong agent to quickly generalise over an unknown task distribution.
Interestingly, both graphs show that the convergence speed during a randomly sampled task
distribution Dgmpieq 18 very close to that of the best task distribution Dy.. This suggests that
there is room to make the bound in Theorem 7.2 even tighter by making some assumptions on
the task distribution—an interesting avenue for future work.

7.3 Related Works

There have been several approaches in recent years for tackling the problem of transfer in lifelong
RL. Most closely related is the line of work on concurrent skill composition [Todorov 2009;
Saxe et al. 2017; van Niekerk et al. 2019; Hunt et al. 2019]. These methods usually focus on
multi-goal tasks, where they address the combinatorial amount of desirable goals by composing
learned skills to create new ones. Given a reward function that is well approximated by a linear
function, Barreto et al. [2020] propose a scheme for few-shot transfer in RL by combining GPI
and successor features (SF) [Barreto et al. 2017]. In general, approaches based on GPI with SFs
[Barreto et al. 2021] are suitable for tasks defined by linear preferences over features (latent
goal states). Given the set of features for an environment, Alver and Precup [2022b] shows
that a base set of successor features can be learned, which is sufficient to span the task space.
While these approaches also support tasks where goals are not terminal, the smallest number
of successor features that must be learned to span the task space is |G| (the upper-bound in
Theorem 7.2). Our work is similar to these approaches in that it can be interpreted as performing
GPI with the logical composition of world value functions, which leads to stronger theoretical
bounds than GPI with the linear composition of successor features. Finally, none of these works
consider the lifelong RL setting where an agent starts with no skill and receives tasks sampled
from an unknown distribution (without additional knowledge like base features or true task
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representations). In contrast, SOPGOL is able to handle this setting with logarithmic bounds on
the number of skills needed to generalise over the task distribution (Theorem 7.2).

Other approaches like options [Sutton ez al. 1999] and hierarchical RL [Barto and Mahadevan
2003] address the lifelong RL problem via temporal compositions. These methods are usually
focused on single-goal tasks, where they address the potentially long trajectories needed to
reach a desired goal by composing sub-goal skills sequentially [Levy et al. 2017; Bagaria
and Konidaris 2019]. While they do not consider the multi-goal setting, they can be used in
conjunction with concurrent composition to learn how to achieve a combinatorial amount of
desirable long horizon goals. Finally, there are also non-compositional approaches [Finn et al.
2017; Abel et al. 2018; Singh et al. 2021], which usually aim to learn the policy for a new
task faster by initializing the networks with some pre-training procedure. These can be used in
combination with SOPGOL to learn new skills faster.

7.4 Conclusion

In this chapter, we proposed an approach for efficient transfer learning in RL. Our framework,
SOPGOL, leverages the Boolean algebra framework developed in Chapters 3 and 6 to determine
which skills should be reused in a new task. We demonstrated that, if a new task is solvable using
existing skills, an agent is able to solve it with no further learning. However, even if this is not
the case, an estimate of the optimal value function can still be obtained to speed up training. This
allows agents in a lifelong learning setting to quickly generalise over any unknown (possibly
non-stationary) task distribution.

The main limitation of this work is that it only considers tasks with binary goal rewards—
where goals are either desirable or not. Although this covers a vast number of many-goal tasks,
combining our framework with works on weighted composition [van Niekerk et al. 2019;
Barreto et al. 2020] could enable a similar level of generalisation over tasks with arbitrary goal
rewards. Another exciting avenue for future work would be to extend our transfer learning and
generalisation results to include temporal tasks by leveraging temporal composition approaches
like options. Finally, we note that just like previous work, we rely on the existence of an off-
the-shelf RL method that can learn goal-reaching tasks in a given environment. Since that is
traditionally very sample inefficient, our framework can be complemented with other transfer
learning methods like MAXQINIT [Abel et al. 2018] to speed up the learning of new skills (over
and above the transfer learning and task space generalisation shown here). Our approach is a
step towards the goal of truly general, long-lived agents, which are able to generalise both within
tasks, as well as over the distribution of possible tasks it may encounter.
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Part 111

Reliable Agents @

In Chapter 8, we demonstrate how the ability to understand task
compositions and solve them without further learning can then be
leveraged by agents to reliably follow natural language instructions.
However, the ambiguity in natural language makes it hard to guarantee that
the task specification and resulting compositional behaviours are correct.
One solution to this is to use formal languages, such as LTL, which can be
verified. In Chapter 9, we propose skill machines, a method for agents to
provably solve formal languages that are regular (like fragments of LTL).
We then show in Chapter 10 that this compositional ability can be

leveraged by robots to safely act in the real world.
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Chapter 8

Natural language instruction following

This chapter is based on the peer-reviewed works
“Learning to Follow Language Instructions with Compositional Policies” [Cohen et al. 2021]
and “End-to-End Learning to Follow Language Instructions with Compositional Policies”
[Cohen et al. 2022], jointly lead with Vanya Cohen, in collaboration with Nakul Gopalan,
Steven James, Matthew Gombolay, Raymond Mooney, and Benjamin Rosman.

In the previous chapters (in Part II), we demonstrated that RL agents equipped with WVFs
(Chapter 5) are able to solve a variety tasks in their environment when given explicit instructions
as Boolean expressions (Chapter 6) or after infering the Boolean expressions from rewards
(Chapter 7). However, it is desirable for an agent to be able to reliably solve a rich variety of
problems that can be specified through natural language—for easier human robot interactions.

Prior work uses natural language to specify tasks and also uses that language to enhance
generalisation to unseen tasks through imitation and reinforcement learning [Ahn et al. 2023;
Blukis et al. 2020]. However, the high sample complexity of RL-based methods presents
difficulties, as agents must map numerous language instructions to corresponding behaviours.
Such methods are also tough to train in lifelong settings. The agents lack ways to capitalise on
individual previously learned tasks.

One generalisation strategy involves composing novel tasks based on previous ones [Todorov
2009]. Language instructions can guide these compositions, but there is no current mechanism
for value function composition guided by language instructions that allows continued learning
as novel tasks are introduced. Furthermore many methods do not offer a fully differentiable
method for updating both WVFs and language representations as novel tasks arise in a continual
learning setting.

To overcome the generalisation issue, we exploit the compositional nature of task specifications
and their solutions (in the form of WVFs). This approach is possible as both natural language
and the learned WVFs exhibit the property of compositionality. The constituent expressions
are possible atomic goal specifications. These goal specifications have WVFs which define the
agent’s behaviour. We use machine translation approaches to map linguistic task specifications
onto corresponding logical expressions, which are then used to combine WVFs to solve the
specified tasks.
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We make the following main contributions in this Chapter:

1. Learning to translate: We develop and evaluate two approaches for learning to follow
natural language instructions from weak supervision. We first develop sampling based
approach. Here, pretrained compositional policies are connected to a translation model
capable of mapping natural language statements to logical expressions specifying compo-
sitions of those policies. The language model then samples sequences of tokens to select
candidate Boolean expressions to follow, using the cumulative rewards from the composed
policies as learning feedback. We then propose a fully differentiable model that learns to
compose value functions to solve novel tasks specified using natural language. Here, the
model learns to output the correct expressions via soft attention.

2. Emperical results for the sampling approach: We demonstrate empirically that pre-
training of the translation model on non-task-specific data is sufficient to generate compo-
sitional expressions. We found the TS5 [Raffel ez al. 2020] language model sufficient to
generate novel Boolean expressions given language commands. This ability to generate
novel expressions leads to a significant reduction in samples from the environment after
the pretrained model learns to solve just a single task. We detail learning results for 18
tasks in the BabyAl showing that compositional policies, along with a pretrained model,
lead to substantial savings in the number of samples required to learn novel tasks. Finally,
we also provide ablation results with and without a pretrained language model, and with
and without our compositional policies evaluated in the environment.

3. Emperical results for the end-to-end: We develop an experimental pipeline to test the
efficacy of language-guided compositional reinforcement learning for 18 tasks in the
BabyAlI domain. We present sample-efficiency results demonstrating that our language-
guided compositional RL approach requires 40.6% fewer learning steps than a strong
non-compositional pretrained baseline agent.

8.1 Translation with transformer models

Recent progress in natural language processing (NLP) has demonstrated the effectiveness of
large-scale generative pretraining and subsequent fine-tuning on downstream tasks, such as
translation, question answering, and classification [Devlin et al. 2019; Peters et al. 2018; Radford
et al. 2018]. Subsequent work has shown that scaling both model parameters and pretraining
corpus size leads to better transfer learning and generalisation Radford ez al. [2019].

To map between natural language instructions and Boolean expressions specifying policy
compositions, we utilise the TS5 sequence-to-sequence model Raffel er al. [2020] based on the
Transformer architecture Vaswani et al. [2017]. The model is pretrained using an unsupervised
learning objective on the Colossal Clean Crawled Corpus (C4) Raffel er al. [2020], a filtered
version of the Common Crawl.! The C4 corpus contains 750GB of text, the vast majority
of which is fluent English. Raffel er al. perform exhaustive ablation studies to develop their
pretrained models, which offer good performance on a variety of NLP tasks including translation.

'https://commoncrawl.org
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Transformer-based models use the self-attention mechanism Vaswani et al. [2017] to build
sequence representations of text inputs, and to transform those representations into probability
distributions over text outputs. As with the original Transformer architecture, the TS model is
composed of both an encoder and decoder stack of self-attention layers to map input sequences
to output sequences. Self-attention layers receive input embeddings from lower layers and
compose them to form higher-level embeddings.

(a) Language command “pick (b) Language command (c¢) Language command
up the yellow ball” with “pick up the red key” with “pick up the red key” with
corresponding logical expres- corresponding logical ex- corresponding logical ex-
sion pickup.yellow A pression pickup.red A pression pickup.red A
pickup-ball. pickup_key. pickup_key.

Figure 8.1: Examples of tasks in the BabyAl PickUpOb j environment [Chevalier-Boisvert
et al. 2019]. For each task, there is a target and distractor object. The agent is represented by
the red triangle. We also investigate performance when four distrator objects are present. a)
The agent must pick up the yellow ball but not the yellow key. To solve this level, the agent
must use the intersection of the “pickup” value functions for “yellow” and “ball”. b) The agent
must pick up the red key while not picking up the grey key. Solving this level requires using the
intersection of the “pickup” value functions for “red” and “key”. c¢) The agent must pick up the
red key while not being distracted by the yellow key and red ball. Solving this level requires
using the intersection of the “pickup” value functions for “red” and “key”.

8.2 Language understanding via sampling

b

Our agent learns to combine pretrained compositional policies by translating BabyAl “mission’
statements (e.g. “pick up the blue box”) into Boolean algebraic expressions which specify
compositions of policies (see domain in Figure 8.1). We limit our investigation to intersections
of policies, although the Boolean compositional policies also allow for disjunction and negation.
Training begins with training a compositional policy to solve each of the task primitives.
The agent can navigate to objects in the BabyAl domain described by three type attributes
{box, ball, key} and six color attributes {red, blue, green, grey, purple, yellow}, which yields
eighteen possible navigation tasks.
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8.2.1 Translating missions to Boolean expressions

We select the smallest of the publicly released TS5 models as the pretrained model for our
experiments (Table 8.1): the T5-small model which has 60 million parameters and is sufficient
for our tasks based upon our empirical exploration.

T5-small model parameters

Embedding dimension 512
Fully-connected dimension 2048
Attention-heads 8
Encoder, Decoder Layers 6

Table 8.1: The parameters of the T5-small model used in our experiments. To train the model
we use the AdamW Optimiser [Loshchilov and Hutter 2019] and a learning rate of 1e-4.

We translate natural language task instructions to Boolean algebraic expressions that represent
the task’s value function. The Boolean algebraic expressions have tokens and operators. The
legal operators are union (disjunction), intersection (conjunction) and negation. The tokens in
the Boolean algebraic expressions represent goal value functions that can be composed to create
richer tasks. For the Baby Al domain, these tokens represent value functions for picking up ob-
jects by type {pickup_box, pickup_ball, pickup_key}, picking up objects by color {pickup_red,
pickup_blue, pickup_green, pickup_grey, pickup_purple, pickup_yellow}, the logical opera-
tors and end-of-sentence tokens {and, < s >}.

Both the input and output tokens are byte-pair encoding (BPE) subword units [Sennrich et
al. 2016] learned from the C4 training corpus. For example, the Boolean task algebra token
“pickup_purple” is represented by the subwords “pickup”, “”, “pur”, and “ple”. Each of the
tokens in the Boolean task algebra is represented by one or more BPE subword units. Instead of
sampling from the BPE subword units directly, continuations are sampled from the distribution
of tokens in the Boolean task algebra. If BPE subwords were sampled directly, at the beginning
of training the probability of outputting valid tokens from the Boolean task algebra would be
vanishingly small. Decoding stops when the stop token is produced or more than three Boolean
algebra tokens have been sampled. We use temperature-based sampling [Ackley ef al. 1985]
to produce translated sequences during training, and greedy sampling during evaluation. For
translation model details see Table 8.1.

Given an input mission to the T5-small model (e.g. “pick up the red ball”) we can sam-
ple a Boolean expression from its output distribution over tokens (e.g. pickup_-red and
pickup ball). This expression is then parsed and validated for syntactic correctness by a
Boolean algebra expression parser. The corresponding WVF is obtained as follows (we omit the
value functions’ parameters for readability):

Qpickup,red/\pickup,ball - min{QpickupJeda Qpickupjmll}

The full process for generating policies from task instructions is illustrated in Figure 8.2.
Finally, the agent can maximise over the composed value function to act in the environment:

7(s) € argmax,. 4 maxyeg Q(s, g, a).
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Figure 8.2: The T5-small model first translates the input mission command “pick up the red ball”
into a Boolean expression, with variables representing the vocabulary of possible WVFs. Then
the intersection of the value functions is computed, resulting in a value function for picking up a
red ball in the environment.

8.2.2 Baseline model

The baseline is a non-compositional CNN-DQN [Mnih ef al. 2015] conditioned on the input
mission language. The model is a simplified version of the baseline used by Chevalier-Boisvert
et al. [2019], and uses a CNN to extract image features and a Gated Recurrent Unit (GRU) [Cho
et al. 2014] that takes the mission as input and outputs text features. The image and text features
are then concatenated and passed through two fully-connected layers to compute the output
Q-values.
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In contrast to our method, the baseline is a joint model which learns a Q-function conditioned
on both image state and language features. As such, its component value function and language
representations are not pretrained. Our method learns both tasks and language separately and
then learns to combine them compositionally. Likewise, the baseline model does not have explicit
compositional structure and must instead learn to condition output Q-values on a combination
of image and language features.

8.2.3 Experiments

To assess the agent’s ability to generalise compositionally, we evaluate the agent as it learns
to solve all available tasks in sequence. In each of ten trials, we randomly shuffle the order in
which the 18 tasks are introduced and then train the agent to solve each task one at a time. At
iteration 0 of each new task, and every 100 training steps thereafter, the performance of the
agent is evaluated using returns from 100 policy roll-outs. A task is considered solved if the
agent successfully reaches the goal object in 95 out of 100 roll-outs, at which point the agent is
presented with the next task in the sequence. During training, Boolean policy expressions are
sampled from the translation model using temperature-based sampling with a temperature of 1.0
to inject randomness in the sampling process. However, when evaluating whether the agent has
successfully solved the task, expressions are generated through greedy sampling to only select
the most likely continuation tokens without noise.

Learning tasks in series

We adopt four experimental settings to investigate the impact of the different components in our
overall system.

First, we consider two strategies for initialising the translation model: we use either 1) the
pretrained T5-small model, or 2) its randomly initialised instantiation provided by Wolf et
al. [2020]. We also consider the effect of the pretrained policies on the overall performance
of the agent by 1) using the returns of the policies executed in the environment as a learning
signal for the language model, or 2) directly comparing the output of the language model to the
ground-truth logical expression. The combinations of language model pretraining and feedback
type form the four experiments presented.

During training the environment provides noisy feedback from randomisation of object and
agent positions and imperfections in the trained compositional policies. Further, each of the
environments has one or four distractor objects sampled uniformly at random from the 18 object
types. These objects may have the same type attributes as the target object, in which case the
mission command changes from using the definite to the indefinite article (e.g. “pick up a red
ball,” instead of “pick up the red ball”).

During inference the mission statement for the current task is translated to a Boolean expression,
which is passed to a Boolean expression parser to determine syntactic correctness. If the
expression is not syntactically valid, the agent receives a reward of —1.0. If the expression is
valid, the corresponding compositional policy is instantiated and executed in the environment 50
times.
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The agent receives the mean reward from these 50 roll-outs. Each episode receives a reward
of +1.0 for successfully picking up the target object, and —2.0 for failing to pickup the target
object within 50 time-steps. The 50 roll-out parameter was chosen by imperially establishing
that 50 offers a robust estimation of the mean reward for the instantiated policy.

The rewards of +1.0 and —2.0 were determined empirically to incentivise the production of
optimal Boolean expressions. Without asymmetrically discouragement for picking up the wrong
objects, the agent can learn to simply rely on color or object type (rather than both) to act in the
environment and attain reward. This behaviour represents a local minimum, where the agent
will attain reward in cases where color or object type distinguishes the correct object from a
distractor object. By asymmetrically discouraging failure, the agent is incentivised to utilise
both the color and object type information to execute more precise policies. The reward scale
and sign determines whether the output Boolean expressions are made more or less likely by the
cross-entropy loss.

Additionally, we evaluate the effect of environment noise on the translation model’s learning.
The translation model is separately trained using feedback from logically comparing sampled
Boolean expressions to the known true Boolean expressions for those tasks. In this setting, the
translation model receives a reward of 4-1.0 for outputting equivalent Boolean expressions and
—1.0 for non-equivalent expressions. This removes sources of noise in training the language
model: the environmental randomisation, distractor objects, and noise from imperfect policies.
However, it differs from purely supervised learning in that learning only occurs on samples from
the translation model, produced through temperature sampling.

Figure 8.3 depicts the effects of pretraining versus randomly initialising the translation model,
when training with feedback from the environment, and with feedback from the equivalence
of output logical expressions. The results indicate that whether acting in the real environment
or with “perfect” feedback based on logical equivalence, using the pretrained model vastly
outperforms the randomly-initialised translation model. While both models see a decrease in the
mean train steps across the randomly shuffled 18 tasks, the number of samples required by the
pretrained model drops precipitously after learning the first task. Further, in both the pretrained
and randomly-initialised cases, learning in the environment is detrimental to model performance,
with both the mean number of training steps, and the standard deviation higher for the agent
when learning from environmental feedback. The greater number of training steps demonstrates
the negative impact of the distractor objects and the agent’s imperfect policies on translation
model learning. In Figure 8.3e the addition of more distractor objects initially requires more
training steps on average to learn new tasks, but with substantially higher variance. However, as
more tasks are learned, the pretrained model outperforms the randomly initialised model (as in
the single distractor setup). We speculate that this is due to the higher variance in the rewards
when using more distractor objects.

Baseline comparison

Figure 8.3f compares the number of training steps needed by the BabyAl baseline model to our
compositional model. As with the other experiments, results are reported over 10 trials, where
the agent learns to solve each task in the task set sequentially. The task order is shuffled between
trials. In this experiment the number of training steps is capped at 20, 000 and a single distractor
object is present in the environment. Initially, the baseline model succeeds in learning the first
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(f) Performance of the Baseline model versus
Compositional models (both with and without
pretraining). All three models are trained using
feedback from the environment with a single
distractor object.

Figure 8.3: Number of training steps required by various agents to solve each task in a random
sequence of tasks. The translation model used is the T5-small model with and without pretraining.
Tasks are learned in series, with the same model used across tasks. Task order is randomised
across trials. The shaded regions represent the standard deviations over 10 runs.

several tasks. However, this model eventually begins to overfit, and reaches the training step
limit for the remaining tasks in the set. Despite a much larger parameter count, neither of the
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Figure 8.4: The mean training steps needed to learn the translation from each mission to each
Boolean expression for each of the 18 potential tasks, when the translation model has perfect
feedback from the environment. Rewards are +1.0 for equivalent output Boolean expressions
and —1.0 for incorrect expressions. Means and Standard Deviations computed over 10 trials.

compositional models overfit, and the compositional model with language model pretraining
needs close to zero additional samples to learn the later tasks.

Difficulty of translation tasks

In this experiment, we fine-tune the pretrained translation model using reinforcement learning
individually on each of the 18 tasks to compare the relative difficulty of the underlying trans-
lations. Unlike in the serial task learning experiment, the translation model learns each task
individually with no transfer between tasks. The mean train steps and standard deviations are
plotted for 10 trials for each task. The purpose is to determine if learning any of the translations
for the tasks are significantly more challenging to learn than the others, which would lead to
differential performance when learning certain sequences of tasks.

Figure 8.4 shows the mean train steps needed to learn each translation task based on the
logical equivalence of the output expression to the ground-truth expression. The figure shows a
similar range of difficulty in translating from each mission statement to each logical expression,
indicating that no tasks are overwhelmingly more difficult than the others. However, there are
differences in the translation difficulty between certain tasks. Translations for picking up “box’
objects consistently require more training samples to learn. The unequal difficulty could be due
to differences between the pretrained features for box objects.

2

8.2.4 Discussion

First, we trained task-specific WVFs (as described in Chapter 5) for a set of preselected atomic
tasks from the BabyAlI environment [Chevalier-Boisvert ef al. 2019]. Additionally, we fine-tune
a T5 model [Raffel er al. 2020] using reinforcement learning to translate natural language
instructions into logical expressions that specify the compositions of the task-specific WVFs.
The WVFs are then used by the agent to form policies for acting in the environment. Finally, the
agent’s collected environment rewards are used as a signal to improve the translation model.
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We evaluate the agent by learning a set of compositional tasks in series and observe the num-
ber of training steps needed to learn each additional task in the series. Further, we perform
ablation studies to understand the effect of model pretraining on web-scale corpora and the
stochastic nature of feedback from the environment on sample complexity. With a pretrained TS
model [Raffel et al. 2020], the mean number of training steps needed to learn an additional task
drops by 86% after learning just one task. Without model pretraining, the mean training steps
drops by only 6%, although the number of training steps continues to drop as more tasks are
learned.

When learning all available tasks in the environment, the number of training steps needed to
learn the final task decreases by 98% for the pretrained model, compared to only 80% for the
randomly initialised model. In terms of the fractional improvement in the training steps needed
to learn the final task, the pretrained model provides a 10x improvement (2% versus 20%) over
the randomly-initialised model.

8.3 Language understanding end-to-end
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Figure 8.5: The NMVN architecture used to learn WVFs. The network maps image observation
inputs and text BabyAl missions to action values by composing the pretrained WVFs using a
differentiable attention mechanism. The model learns using the same DQN objective that was
used to pretrain the WVFs.
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We now propose the Neural Module Value Network (NMVN) to enable fully differentiable com-
positional learning of language-instruction following tasks without demonstrations or imitation
learning. We build on the Boolean W VF representations of Section 6.3 and propose a system for
learning compositional policies for following language instructions. Such language-conditioned
compositional RL policies can be treated as pretrained general-purpose policies to which novel
behaviours can be added as needed when solving different novel tasks. Our insight is that
language commands implicitly specify the compositional structure of the environment, but
without compositional RL representations, this structure cannot be used effectively. Likewise it
would be challenging to learn how best to compose the RL representations in the absence of
this information. Language, therefore, provides the information required to unlock the utility of
compositional RL.
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The Neural Module Value Network (NMVN) in Figure 8.5 maps input BabyAl observations
and text mission statements to action values. The BabyAl environment observations are image
observations of the whole environment and mission commands. The image observations are
54 by 54 pixels and contain 3 color channels . The commands take the form “pick up [the/a]
[object]” where [object] contains a composition of type and color attributes (e.g. red box). If
more than one valid goal object is present in the environment, the indefinite article “a” is used.
TS5 produces a sequence of embeddings of a fixed output length conditioned on the input mission
command. In the NMVN, these output representations are transformed into attention values over
the pretrained WVFs and operations.

As there are two object attribute classes available in BabyAl (color and object type) the model
allows for Boolean conjunction expressions with two arguments. At the operator position, to
approximate the “intersection” min operation from Chapter 6, we utilise softmin. At each
argument position of the decoder sub-module, attention weights are calculated over a vocabulary
of tokens describing the object type attributes {box, ball, key}, object colors {red, blue, green,
grey, purple, yellow}. Each of these tokens corresponds to a pretrained WVFE. Attentions are
calculated as the softmax over the logits of these tokens.

At each argument position, a hard attention is calculated from the soft-attention by taking
the max over attention positions. The attention mechanism learns to select the appropriate
arguments to the conjunction expression. However by utilising a hard attention mechanism
the model would no longer be differentiable. To remedy this, we approximate the gradient
with respect to the hard attention using the straight-through estimator of Jang et al. [2017].
In the forward pass, all argument attentions are hard, but the gradients for the backward pass
are calculated with respect to a softmax distribution. We find this works well in practice and
produces policies which attain our success threshold of 90%, which was not true for the soft
attention-based arguments. Composed value function outputs are calculated using a simple
recurrence mechanism. We note that this restricts the space of compositions expressible by the
model and some Boolean expressions would require additional attention and memory modules
to handle operation precedence. Nonetheless this model is sufficient to express the compositions
needed to solve the BabyAlI pickup tasks.

8.3.1 Training the NMVN

For each episode during training, the NMVN receives an input mission command and environ-
ment image observations. At each environment step, the mission command is passed to the T5
model and the image observations are passed to the CNN-DQNs that model the WVFs. These
WVFs are then combined using the learned attention mechanism to produce action values for
the task. The agent collects experience from the environment based on these WVFs. As in DQN,
at each step a random batch of experience tuples is sampled and the NMVN is updated using the
DQN temporal difference (TD) loss [Mnih et al. 2015; Sutton 1988]. Optimising DQN poses
significant challenges and issues with stable learning are outlined in other works [Haarnoja et
al. 2018c; Maei et al. 2009; Mnih et al. 2015; Van Hasselt et al. 2016]. Through a rigorous
hyperparameter search we find hyperparameters that lead to effective learning. A full list of
relevant hyperparameters are available in Table 8.2.
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NMVN Hyperparameters

Optimiser AdamW
Learning rate Se-7
Batch Size 32
Softmax Temp 0.5
Replay Buffer Size 1e3

€ init 0.5

e final 0.1

Table 8.2: The model hyperparameters were determined empirically through grid-search over a
set of held-out tasks. The AdamW Optimiser was introduced by Loshchilov and Hutter [2019].

8.3.2 Baselines
CNN-DQN

The naive baseline is a joint language and vision model which learns a single Q-function from
scratch for all tasks. The baseline architecture is based on a CNN-DQN [Mnih et al. 2015] with
a GRU [Cho et al. 2014] implementing the Baby Al mission language encoder. The final GRU
hidden state is used as the representation for the input mission command. Like the NMVN this
network maps image observation inputs and text Baby Al missions to action values, but utilises a
FilLM layer [Perez et al. 2018] to condition the action values on the inputs. Like the pretrained
WVFs and NMVN, this model also learns using the DQN loss. Its component value function
and language representations are not pretrained.

Non-compositional pretrained NMVN

We also present results for a more competitive baseline that leverages WVF pretraining. It
is based on an ablated NMVN architecture that removes the NMVN’s ability to generalise
compositionally. This model is initialised with the pretrained basis task WVFs and uses T5
for its language encoder. Unlike the NMVN that generates differentiable compositions of two
WVFs, this model simply takes a linear combination of the pretrained WVFs, using an attention
mechanism conditioned on the mission language. This baseline does not have the “and” operator
or multiple variables. It is equivalent to the NMVN with only one variable. Also unlike the
NMVN, the pretrained WVFs are not frozen and are instead finetuned during training to better
model the true value function. As in the NMVN, the T5 model is also finetuned. Each WVF is
labeled only with a unique ID. In this setting, the underlying compositional-semantic structure of
the task attributes is hidden and the model must discover the relevant language-W VF mappings.

To assess the comparative advantage of understanding the ground-truth semantics of the WVFs,
we propose a variant of the non-compositional pretrained baseline, labeled as ’with structure”.
Analogous to the full NMVN, this model is supplied with labels for WVFs, granting it equivalent
access to the fundamental semantics and structure of the object attributes. Given that the mission
text and WVFs share a common vocabulary, this change increases performance by allowing the
model to learn attentions in fewer samples.
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8.3.3 Experiments

We evaluate the NMVN and baselines in a 7 x 7 BabyAl environment. We assess the agent’s
ability to perform tasks that involve intersections of attributes. For example,*“pick up the red ball”
requires the intersection of the basis “pick up the red object” and “pick up the ball” WVFs. In
each episode, there are four distractor objects randomly sampled and placed in the environment.
The agent must correctly navigate to the object specified by the mission and pick it up with 100
environment steps. All experiments were run on NVIDIA RTX A5000 GPUs with 24GB of
VRAM.

Four-attribute composition We show results for learning sequences of tasks that test the
agent’s ability to generalise to novel compositions of attributes and entirely novel attributes.
From the eighteen intersection tasks that can be formed by composing the three object and six
color attributes, we select sets of four tasks that are each composed of four attributes, two color
attributes and two object type attributes. These are then learned in series, with a shared model
learning all four tasks sequentially. For example, the attributes present in the tasks “pick up the
red ball” and “pick up the green key” can be combined to form two new tasks: “pick up the
green ball” and “pick up the red key”. We evaluate the agent by plotting the number of training
steps required to attain a 90% success rate on each task, up to a maximum of one thousand steps.
Once a task reaches the success rate threshold, the next task in the sequence starts training. The
reported training steps do not include the warm-up steps required to fill the replay buffer with
environment experience tuples before training starts.

To succeed in this setting, the agent must learn the correct mapping between the mission language
and the WVFs (which correspond to environment attributes) and be able to generalise this
mapping to the held-out combinations of attributes. If the agent learns a compositional mapping
between these spaces, then it should be able to generalise to novel combinations of attributes
with few additional learning samples. Further, by using the transfer-learning capabilities of the
language model, the agent can in principle generalise to entirely unseen attributes.

Intersection task series While the previous experiment assesses the agent’s ability to gen-
eralise to chosen combinations of attributes, this experiment investigates agent performance
across a larger number of tasks. The agent learns each of the eighteen intersection tasks in series.
The tasks are randomly shuffled across seeds. The agent has a budget of 100 training steps to
Optimise each task before it starts learning the next task in the series. While the agent only trains
on a single task at a time, it is evaluated every 50 timesteps on all of the intersection tasks. This
experiment assesses the agent’s ability to effectively learn series of tasks from very few samples
and how well the agent generalises its experience from learning single tasks to performing the
rest of the tasks. One advantage of compositional representations is that they should generalise
better than non-compositional ones and be less likely to overfit. If the agent suffers catastrophic
forgetting [Kirkpatrick et al. 2017] or otherwise overfits to the individual tasks, then the mean
success rate across all the tasks will drop. If the agent generalises properly, the agent should
achieve high average performance across the tasks. After learning a few tasks, learning more
tasks should not significantly increase the agent’s performance as the agent should have already
generalised systematically to unseen combinations of attributes.
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Results

We present results for our two experimental settings, the four-attribute series tasks, and the inter-
section series tasks, across four models: our proposed model (NMVN), the non-compositional
pretrained baseline with access to the ground-truth WVF semantics (NCPS), the non-compositional
pretrained baseline without this information (NCP), and the randomly initialised deep Q-learning
baseline model (CNN-DQN). All results are averaged over three random seeds.

Four-attribute composition As shown in Figure 8.6, the NMVN learns to complete each
sequence of tasks to a 90% success rate in fewer than 1,000 steps on average. For two tasks,
the NMVN required no additional training steps to solve those tasks. By contrast, the non-
compositional baselines require many more steps to solve the tasks overall, and in some cases
do not solve the tasks before the 1,000 step timeout. For some tasks such as “blue box™ and
“blue key” the non-compositional baselines perform competitively to the NMVN. The non-
compositional pretrained baselines solve these tasks in fewer steps than the NMVN. However,
both models fail to generalise to the other tasks in the series. In the case of the “green box” task,
the NMVN solves this task with no additional training steps after training on the other tasks in
the series. Neither baseline demonstrates effective transfer across the tasks or generalises in zero
additional training steps to any of the tasks. As expected the CNN-DQN agent does not solve
any of the tasks within the timeout and the NCP agent requires many more steps on average to
learn the tasks, and reaches the timeout threshold on most tasks.
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Figure 8.6: In each plot, the pickup task is learned for each object in series from left to right
using a shared model. Mean environment steps needed to attain a 90% success rate on each
task and 80% confidence intervals are computed across three trials. Lower is better. The two
non-compositional pretrained baselines are denoted NCPS and NCP. Some tasks require no
additional training steps for the agent to succeed. The NMVN model achieved a 40.6% average
reduction in the number of steps required to complete all twelve tasks over the NCPS baseline.
Note that in some cases the NM VN requires no additional training steps to solve the tasks.
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Figure 8.7: In each plot, the pickup task is learned for each object in series from left to right
using a shared model. Mean final success rates for each task and 80% confidence intervals are
computed across three trials. Higher is better. While the NMVN does not outperform the NCPS
baseline for every task, relative to the baselines its success rate tends to increase as it trains on
more tasks. Because the tasks time out after 1,000 time steps, the success rates at completion are
not always 90%.

Figure 8.7 plots the success rate attained by each agent when it finished training on each task.
The NMVN attains a higher success rate than the baselines on most of the tasks. There are
some tasks where the baselines perform equivalently to the NMVN or better, but the NMVN
generalises more effectively to the following tasks in those series. For example, in Figure
8.7a, the NMVN outperforms the baselines on the final task in the series. Across the 12 tasks
examined, between the NMVN and the non-compositional pretrained baseline with access to the
environment attributes, there was a 40.6% average reduction in the number of steps required to
complete each task.

Intersection task series Models that generalise compositionally should transfer learn between
combinations of attributes, allowing them to perform better on held-out tasks with fewer samples.
Figure 8.8 plots the performance of the NMVN and baselines as they sequentially learn all 18
intersection tasks. While each model is trained on one task at a time, its overall performance
on all tasks is evaluated. Despite being trained on each task for only 100 steps, the NMVN
demonstrates transfer learning between the tasks, attaining a high level of success on the overall
set of tasks. The NCPS baseline can finetune its value functions and has access to the underlying
WVF semantics. However, it only reaches the same success rate as the NMVN after training
on almost all of the intersection tasks. This indicates that there is value in having access to the
semantics of the WVFs. The NMVN appears to reach a higher level of performance before
experiencing a slight drop around the seventh task. This decline may be attributable to overfitting
or noise, especially considering that the sequence of tasks is shuffled randomly. The NCP

123



1.0 |

| |
—— NMVN
NCPS
£0.8 —— NCP
< —— CNN-DQN
(7]
14 — o
S0.6 == _—S
=}
(V]
©
0.4
(@]
C —t
s 0.2
0.0y 250 500 750 1000 1250 1500 1750
Steps

Figure 8.8: Mean success rates for training on 18 intersection tasks sequentially and 80%
confidence intervals across three trials. Higher is better. The vertical lines indicate the start and
end of training on each task. The model is trained on each task for 100 steps and evaluated on all
tasks every 50 steps. The NMVN model outperforms the NCPS model when both are trained on
a limited number of tasks. As expected, once both models have been trained on all tasks, their
overall success rates across the 18 tasks converge. The NMVN appears to peak in performance
before decreasing slightly around the seventh task. This could be due to overfitting or noise as
the task order is randomly shuffled. The two non-compositional pretrained baselines are denoted
NCPS and NCP.

baseline does not attain a high success rate or improve as it is trained on more tasks. Without
this information, the learning problem is significantly more difficult, which limits the agent’s
ability to generalise from a few samples.

8.3.4 Discussion

We demonstrated a fully differentiable method to ground language instructions to compositional
RL policies that demonstrates zero-shot task solving. This represents an improvement over the
state-of-the-art language to value function models such as [Ahn et al. 2023; Driess et al. 2023]
as these require demonstrations to learn their policies and have no mechanisms to update the
policy and the LLMs at the same time. Our model provides the ability to update the right value
functions and an LLM for any given task while utilising the compositional task structure. We
believe such ability is critical if we desire agents capable of continually learning language and
behaviour over time in scenarios such as lifelong learning.

In this work, we use pretrained WVFs and learned to ground to these functions with finetuning.
While our method leverages the known compositional structure of the environment, this structure
could be discovered while learning the basis WVFs. We would like to demonstrate the learning
of value functions and language representations simultaneously from scratch. In principle our
model supports this, but in practice we have found it challenging for the model to attain a high
success rate on all but the simplest domains. To make the problem easier, a curriculum could be
leveraged to provide implicit information about the environment structure.
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8.4 Related works

Our work is situated within the paradigm of reinforcement learning, where novel tasks are
specified using natural language and the agent is required to solve the task in the fewest possible
steps. Previous approaches have solved this problem using end-to-end architectures that are
learned or improved using reinforcement learning and a set of demonstrations [Anderson
et al. 2018; Blukis et al. 2020; Chaplot et al. 2018]. A problem with such approaches is a
lack of compositionality in the learned representations. For example, learning to navigate to
a red ball does not help the agent to learn to identify and navigate to a blue ball. Moreover,
demonstrations are hard to come by from users especially when the user does not know the
desired behaviour. Approaches that translate language commands to a symbolic representation
and then plan to reach a goal can demonstrate compositionality due to the pre-specified symbolic
representations [Dzifcak e al. 2009; Williams et al. 2018; Gopalan et al. 2018]. However, these
works do not allow the agent to learn policies, and use pre-specified symbols and a model for
planning.

Compositional representation learning has been demonstrated in the computer vision and
language processing tasks using Neural Module Networks (NMN) [Andreas et al. 2016; Hu
et al. 2018], but we explicitly desire compositional representations both for the reinforcement
learning policies and the language command. Kuo ef al. [2021] do demonstrate compositional
representations for policies, but they depend on a pre-trained parser to learn this representation.
On the other hand, we use large language models [Raffel et al. 2020] and compositional policy
representations to demonstrate compositionality in our representations and the ability to solve
novel unseen instruction combinations.

Compositional policy representations have been demonstrated using value function compo-
sitions, which were first demonstrated by Todorov [2007] using the linearly solvable MDP
framework. Moreover, zero-shot disjunction [van Niekerk ef al. 2019] and approximate conjunc-
tion [Haarnoja et al. 2018a; van Niekerk ez al. 2019; Hunt et al. 2019] have been shown using
entropy regularised RL. Nangue Tasse ef al. [2020a] demonstrate zero-shot optimal composition
for all three logical operators—disjunction, conjunction, and negation—in the stochastic shortest
path problems. In contrast, our approach extends ideas from Chapter 6 to solve novel commands
specified using natural language.

Recent works like SayCan use language models and pretrained language-conditioned value
functions to solve language specified tasks few-shot and zero-shot [Ahn et al. 2023]. Shridhar et
al. [2021] uses pretrained image-text representations to perform pick-and-place tasks on a robot.
Other work incorporates learning from demonstration and language with large-scale pretraining
to solve robotics tasks Driess et al. [2023]; Brohan et al. [2022]. However, these works use
learning from demonstration as opposed to reinforcement learning. Moreover, their methodology
is unsuitable for continual learning settings where both the RL value functions and language
embeddings are improved over time as novel tasks are introduced.

8.5 Conclusion

In this chapter, we investigated two approaches for instruction following that leverages the
compositional representations present in both the Boolean Task algebra value functions and in

125



large, pretrained language models. Since regular value functions cannot in general be optimally
combined to produce desired behaviours [Todorov 2009; van Niekerk et al. 2019], we leveraged
WVFs since they admit composability. By ensuring that both the language and control aspects
of the agent are compositional, we demonstrated that an agent can use its existing knowledge to
quickly solve new tasks using very few samples. Such sample efficiency is critical in developing
long-lived agents that are required to learn and act in the real world.

However, the proposed approach assumes given basis WVFs. We would like to create a fully
differentiable model that learns to create a space of compositional goals and to map language to
the space of Boolean algebra over the learned compostional goals.

To adress this goal, we develop the Neural Module Value Network (NMVN), a fully differentiable
model that learns to follow language instructions using WVFs. We leverage compositionality to
tackle the complex challenges of reinforcement learning (RL) methods, providing a pathway
to more generalisable and efficient RL agents. We present results for our model and non-
compositional baselines on challenging tasks that require the agent to generalise to novel tasks
from few samples. Our approach is able to solve novel tasks to a high success rate, often in
hundreds of time steps. Some tasks are even solved zero-shot. Not only does our model represent
a substantial improvement over standard CNN-DQN agents, but it also outperforms a competitive
non-compositional pretrained baseline, requiring 40.6% fewer learning steps across a series of
tasks. Overall these results demonstrate the utility of combining language representations with
compositional RL.

In summary, the findings presented underscore the significance of integrating language represen-
tations with compositional RL, highlighting the potential for creating more robust and versatile
agents capable of mastering a wide array of tasks and solving them reliably.
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Chapter 9

Skill machines: Temporal logic composition

This chapter is based on the published work
“Skill Machines: Temporal Logic Skill Composition in Reinforcement Learning” [Nangue Tasse
et al. 2024], in collaboration with Devon Jarvis, Steven James, and Benjamin Rosman.

In the previous chapter, we demonstrated how agents can leverage their zero-shot logical
composition abilities to follow natural language instructions. We achieved this by decomposing
the problem into two steps: (i) language understanding where the agent learns from trial and
error how to translate from natural language instructions to formal language Boolean expressions;
then (i1) instruction following where the agent composes its learned basis skills according to his
language understanding to solve the task. However, we only demonstrated this for intersection
instructions over two attributes (shape and color). Even then, this proved challenging due to the
difficulty of language understanding.

If we ultimately want agents that are trully reliable with guarantees on their language understand-
ing and instruction following, then one promising approach is using formal languages directly to
specify instructions (Chapter 2.3). However, as we described in the introduction and background
chapters, this is particularly challenging because of the need for simultaneous spatial (logics)
and temporal composition abilities.

In this chapter, we aim to address the highlighted problem by combining the logical composition
framework with reward machines to develop an agent capable of both zero-shot spatial and
temporal composition. We particularly focus on temporal logic composition, such as linear
temporal logic (LTL) [Pnueli 1977], allowing agents to sequentially chain and order their
skills while ensuring certain conditions are always or never met. We make the following main
contributions:

1. Skill machines: We propose skill machines (SM), which are finite state machines (FSM)
that encode the solution to any task specified using any given regular language (such
as regular fragments of LTL) as a series of Boolean compositions of skill primitives—
composable sub-skills for achieving high-level goals in the environment. An SM is defined
by translating the regular language task specification into an FSM, and defining the skill
to use per FSM state as a Boolean composition of pretrained skill primitives.
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2. Zero-shot and few-shot learning using skill machines: By leveraging reward machines
(RM) [Icarte et al. 2018]—finite state machines that encode the reward structure of a
task—we show how an SM can be obtained directly from an LTL task specification, and
prove that these SMs are satisficing—given a task specification and regular reachability
assumptions, an agent can successfully solve the task while adhering to any constraints.
We further show how standard off-policy RL algorithms can be used to improve the
resulting behaviours when optimality is desired. This is achieved with no new assumption
in RL.

3. Emperical and qualitative results: We demonstrate our approach in several environments,
including a high-dimensional video game and a continuous control environment. Our
results indicate that our method is capable of producing near-optimal to optimal behaviour
for a variety of long-horizon tasks without further learning, including empirical results
that far surpass all the representative state-of-the-art baselines.

9.1 SKkill composition for temporal logic tasks
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Figure 9.1: Illustration of our framework: Consider a continuous environment containing a robot
(red sphere) with 3 LiDAR sensors that it uses to sense when it has reached a red cylinder (Q),
a green button (@), or a blue region (). The agent first learns skill primitives to reach these 3
objects (the red, green, and blue sample trajectories obtained from them respectively). Then
given any task specification over these 3 objects, such as: “Navigate to a button and then to a
cylinder while never entering blue regions” with LTL specification (F(@ A X (F @) A (G @),
the agent first translates the LTL task specification into an RM, then plans which spatial skill to
use at each temporal node using value iteration and composes its skill primitives to obtain said
spatial skills (culminating in a skill machine), and finally uses them to solve the task without
further learning. The RM is obtained by converting the LTL expression into an FSM using Spot
[Duret-Lutz et al. 2016], then giving a reward of 1 for accepting transitions and 0 otherwise.
The nodes labeled ¢ in the RM and SM represent terminal states (sink/absorbing states where no
transition leaves the state).

Given that any formal language can be used to specify a temporal logic task (Section 2.3), for

clarity, we will focus our attention on tasks specified using regular fragments of LTL—such as
co-safe LTL [Kupferman and Vardi 2001]. To ensure that the optimal policy for the resulting
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product MDP (Definition 2.10) is also the policy that maximises the probability of satisfying the
LTL specification, we will henceforth assume that the environment dynamics are deterministic.

To describe our approach, we use the Safety Gym Domain [Ray et al. 2019] shown in Figure 9.1
as a running example. Here, the agent moves by choosing a direction and force (A = R?) and
observes a real vector containing various sensory information like joint velocities and distance to
the objects in its surrounding (S = R%?). The LTL tasks in this environment can then be defined
over 3 propositions: P = {Q, @, D}, where each proposition is true when the agent is ¢ = 1
metre near its respective location.

2

Now consider an agent that has learned how to “Go to the cylinder” (F' Q), “Go to a button’
(F' @), and “Go to a blue region” (I’ )). Say the agent is now required to solve the task with
LTL specification (F(e A X(F @))) A (G —@). Using prior LTL transfer works [Vaezipoor
et al. 2021; Jothimurugan et al. 2021; Liu et al. 2022], the agent would have learned options
for solving the first 3 tasks, but then would be unable to transfer those skills to immediately
solve this new task. This is because the new task requires the agent to first reach a button that is
not in a blue region (eventually satisfy ® A —~Q)) while not entering a blue region along the way
(always satisfy =(Q)). Similarly, it then must eventually satisfy O\ = while never satisfying
O. However, all 3 options previously learned will enter a blue region if it is along the agent’s
path. Hence the agent will need to learn new options for achieving ® A ~@ and (@ A —@ where
the option policies never enter ) along the way.

In general, we can see that there are 22" possible Boolean expressions the agent may be required
to eventually satisfy (spatial curse), and 22" possible Boolean expressions the agent may be
required to always satisfy (temporal curse). This highlights the curses of dimensionality we aim
to simultaneously address. In this section, we will introduce skill primitives as the proposed
solution for addressing the aforementioned curses of dimensionality. We will then introduce
skill machines as a state machine that can encode the solution to any temporal logic task by
leveraging skill primitives.

9.1.1 From environment to primitives

We desire an agent capable of learning a sufficient set of skills that can be used to solve new
tasks, specified through LTL, with little or no additional learning. We introduce the notion of
primitives which aims to address the spatial and temporal curses of dimensionality we discussed
above:

Spatial curse of dimensionality: To address this, we can learn WVFs (the composable value
functions described in Chapter 5) for eventually achieving each proposition, then compose them
to eventually achieve the Boolean expression over the propositions. For example, we can learn
WVFs for tasks F' Q, F' e, and F' Q. However, the product MDP for LTL specified tasks have
different states and dynamics (see Definition 2.10). Hence, they do not satisfy the assumptions
for zero-shot logical composition (Chapter 6). To address this problem, we define task primitives
below. These are product MDPs for achieving each proposition when the agent decides to
terminate, and share the same state space and dynamics. We then define skill primitives as their
corresponding WVFs.

129



Temporal curse of dimensionality: To address this, we introduce the concept of constraints
C C {p| p € P} which we use to augment the state space of task primitives'. In a given
environment, a constraint is a proposition that an agent may be required to always keep True or
always keep False in some FSM state of a temporal logic task. Equivalently, it is a proposition
which may never change across the trajectory of the agent in the FSM state. When contradicted
it may transition the agent into a failure FSM state (an FSM sink state from which it can never
solve the task). For example, some tasks like (F(® A X (F'@))) A (G —@) require the agent
to solve a task F'(@ A X(F {g)) while never setting @ to True (G —@). By setting the @
proposition as a constraint when learning a primitive (e.g achieving @), the agent keeps track
(in its cross-product state) of whether or not it has reached a blue region in a trajectory that did
not start in a blue region. That is, in an episode where the agent does not start in a blue region
but later goes through a blue region and terminates at a button, the agent will achieve the goal
g = {®,Q} € 27C. We henceforth assume the general case C = {p | p € P} for our theory,
then later consider different choices for C in our experiments.

We now formally define the notions of task primitives and skill primitives such as “Go to a
button™:

Definition 9.1 (Primitives). Let (S, A, P,~, P, L) represent the environment the agent is in, and
C be the set of constraints. We define a task primitive here as an MDP M,, = (Sg, Ag, Pg, R, )
with absorbing states G = 27C that corresponds to achieving a proposition p € P UC, where
Sg = (Sx2°)UG; Ag = A x A, where A, = {0, 1} is an action that terminates the task;

Py((5.¢), (@ ) =

9

0 otherwise

{l/ . l:faT » ; Rp(<870>, <a7a7'>) =

1 ifa,=1landpel Uc
(s',c')  otherwise’

where s' ~ P(:|s,a), | = L(s), ' = L(s'), and ¢ = cU (I ®T) N C).
A skill primitive is defined as Q) ((s, c), g, (a, a,)), the WVF for the task primitive M,,.

The above defines the state space of primitives to be the product of the environment states and
the set of constraints, incorporating the set of propositions that are currently true. The action
space is augmented with a terminating action following Barreto et al. [2019] and Nangue Tasse
et al. [2020a], which indicates that the agent wishes to achieve the goal it is currently at, and is
similar to an option’s termination condition [Sutton ef al. 1999]. The transition dynamics update
the environment state s and the set of violated constraints ¢ when any other action is taken.
Here, the labeling function is used to return the set of propositions [ and [” achieved in s and
s’ respectively. Any constraint present exclusively in [ or [” is added to ¢, since it has not been
kept always True or always False. Finally, the agent receives a reward of 1 when it terminates in
a state where the proposition p is true, and 0 otherwise. These primitives can then be learned
using any suitable RL algorithm, such as Q-learning in the tabular case (Algorithm 9 shows the
full pseudo-code). Figure 9.2 shows examples of the resulting optimal policies when the set of
constraints is empty and non-empty.

IThe notation represents when a literal (a proposition p € P or its negation —p) is being used as a constraint.
Similarly, we will use P or & respectively when the literals in a set 7P or Boolean expression ¢ are constraints.
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Since all task primitives Mg = {M,, | p € P U C} share the same state space, action space, dy-
namics, and rewards at non-terminal states, the corresponding skill primitives Qg == {Q; | p €
P UC} can be composed to achieve any Boolean expression over P U C (Chapter 6). We next
introduce skill machines which leverages skill primitives to encode the solution to temporal
logic tasks.

POV, [P [Fr—— —

(] ® ®
© oo © w % y’ 5 ) O~ ©
(@) M A —\Mo, (b) MQA—'Mo/\—'Mé, (©) MQ A MO A —|M6, (d) MQA—!Mo/\—!MG,

92{07076}’r:1 9:{Q>O},T=1 gZ{QaOaO}J‘Zl g={Q,O,6},r:0

Figure 9.2: Effect of constraints on primitives (C' = {6}) We show compositions of task
primitives (for example MQ A ﬁMO where the agent needs to achieve Q A ~Q), trajectories,

goal reached (g), and reward obtained () when following: (a-c) Optimal policies; and (d) a
non-optimal policy.

9.1.2 Skill machines

We now have agents capable of solving any logical composition of task primitives Mg by
learning only their corresponding skill primitives @ and using the zero-shot composition
operators (Chapter 6). Given this compositional ability over skills, and reward machines that
expose the reward structure of tasks, agents can solve temporally extended tasks with little or no
further learning. To achieve this, we define a skill machine (SM) as a representation of logical
and temporal knowledge over skills.

Definition 9.2 (Skill Machine). Let (S, A, P,~, P, L) represent the environment the agent is
in, and Q be the corresponding skill primitives with constraints C. Given a reward machine
Rsa = (U, uo, 6y, 0,), a skill machine is a tuple Q% , = (U, up,dy,0q) where ég : U —
[Sg x Ag — R] is the state-skill function defined by:

5@(”)«87 C>? <a7 O>) = Imnax Q;u(<57 C)?Qv <a7 O>)>

geg

and Q;, is the composition of skill primitives Qg according to a Boolean expression o, € 9277¢

For a given state s € S in the environment, the set of constraints violated ¢ C C, and state u in
the skill machine, the skill machine computes a skill dg(u)((s, ), (a,0)) that an agent can use
to take an action a. The environment then transitions to the next state s’ with true propositions
lI'—where (s', ') < Pg((s,c),(a,0)) and " < L(s')—and the skill machine transitions to
u’ < 0,(u,l"). This process is illustrated in Figure 9.3 for the skill machine shown in Figure 9.1.
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Algorithm 9: Q-learning for skill primitives

Input : S,A,P,C,’Y,O&,RMAX = LRMIN =0
Initialise : Qprax((s,¢), g, {(a,a,)) and Qrrn((s,¢), g, (a,a,)), goal buffer G = {0}
foreach episode do
Observe initial state s € S and true propositions [ € 27, sample ¢ € 2¢ and g € G
while episode is not done do
argmax Quax((s,c),g,(a,a,)) if Bernoulli(l —¢) =1
(a,a,)y (a,ar)
sample (a,a,) € A x {0,1} otherwise
Execute a and observe next state s’ and true propositions I’

Get true constraints ¢ < cU ((I® 1) NC)
if(a, =1)thenG + G U {lI'Uc}
foreach Q € {Quax, Quin} do
if (a, # 1) thenr < 0
if(aT =1land Q = QMAX) then r RMAX
if(CLT =1land Q = QMIN) then » +— Ryn
foreach ¢’ € G do
7« Ruwif(a, =1land g #1'Uc)elser
if (s’ is terminal or a, = 1) then
Q((s,0), 9 (a,ar)) & 7
else
Q(<57 C>7 glv <a7 CLT>) = [F +ymax(y ar) Q((‘S,v Cl>, 9/7 <CL/, CL;.>)}
s« s'andc <«
if (a, = 1) then terminate episode
Qg < @
foreach p € PUC do
Q,((s,¢),9,(a,ar)) = Quax((s,c), g, (a,a,)) if (p € g) else
QMIN(<S7 C>7 9, <(l, aT>)
Qg + Qg U{Q,}

return Qg
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Remarkably, because the Boolean compositions of skill primitives are optimal, there always
exists a choice of skill machine that is optimal with respect to the corresponding reward machine,
as shown in Theorem 9.1, which demonstrates that SMs can be used to solve tasks without
having to relearn action level policies:

Theorem 9.1. Let 7*(s, u) be the optimal policy for a task My specified by an RM Rs 4. Then
there exists a corresponding skill machine Q3 4 such that

7*(s,u) € argmax dg(u)((s, ), (a,0)).
acA

Proof. Define the skill per SM state Q; to be the Boolean composition of skill primitives
that satisfy the set of propositions g € 2PYC, where ¢ is the set of propositions satisfied and
constraints violated when following 7*(s, u). Then 7*(s, u) € argmax, 4 dg(u)((s, ¢), (a,0))
since Q) is optimal using Nangue Tasse et al. [2022a] and optimal policies maximise the
probability reaching goals (since the rewards are non-zero only at the desirable goal states,
where they are 1). [

start

S (@A~Qora5) Qo/\—| (QeA~QoA—Qp) —». t
oA-Q .

WA0 U
5 (@eAQa5) Q>.t Q Q Q

¢r-0
ot

(a) Skill machine ~ (b)e=0,1=0,Q,, = () c=0,I1={0},Qo, = () c = 0,1 = {0}
Qe N —|QO A —Q 6 Qo A —|QO A —Q 6 episode terminates

9 ® © oo

Figure 9.3: Execution of a skill machine in the Safety Gym domain. (a) An example skill
machine; (b) A snapshot of the environment at the initial state. In this state, no constraint
has been reached (¢ = ()), no proposition is true (I = ()), the SM is at state u = ug, and the
composed skill outputted by the SM is Q,, = Q@ A ﬁQO A —Q ) (which the agent uses to

act in the environment); (c) The trajectory of the agent until it achieves ® A =Q A — 6 In
the current environment state, no constraint has been reached (¢ = ()), the agent is at a green
button (I = {@}), the SM transitions to state u = u;, and the composed skill outputted by the
SMis Q,, = QQ A ﬂQO A —Q o (which the agent uses to act in the environment); (d) The

trajectory of the agent until the agent achieves Q A-QAN~ 6 In the current environment
state, no constraint has been reached (¢ = (), the agent is at the red cylinder and a green button
(= {Q, @}), the SM transitions to the terminal state ¢, and the episode terminates.

9.1.3 From temporal logic tasks to skill machines

In the previous section, we introduced skill machines and showed that they can be used to
represent the logical and temporal composition of skills needed to solve tasks specified by
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reward machines. However, we only proved their existence—for a given task, how can we
acquire an SM that solves it?

Stilrt stizrt start
-0 A-Q
O L I L = =Y
(oA -0, 0) (A-0,0.9) oA-Q
) 0 ) 0 —19 A ﬁo
(900,05 (K205 gt (-gr-0,09) (w205 g ¢ <; NP
@A-0,1) (@A-0,1) ¢ Aﬂo¢
ot ot ot
(a) Reward machine (b) Value iterated RM (c) Skill machine

Figure 9.4: The reward machine, value iterated reward machine (using v = 0.9) and skill machine
for the task with LTL specification (F (@ A X (F @))) A (G —@). The agent composes its skill

o~

primitives to achieve op Ao = (@A=Q)A—(Q) at up and op A—oe = (GA-Q)A—(Q) at uy.

Algorithm 10: Skill machine from reward machine
Input : Qg, (U, ug, 4y, Oy, ),
Initialise : RM value function Q)(u, o), value iteration error A = 1
Let B(u) := the set of Boolean expressions defining the RM transitions d,(u, -)
/* Value iteration */
while A > 0 do
A+0
for u € U do
for o € B(u) do
v+ 6, (u,0) + ymaxy Q(0,(u,0),0’)
A =max{A,|Q(u,o) — |}
Q(u, o) < '

/+ Skill machine’s skill function */
for u € U do

op,0c < argmazy Qu,o’), \/{o | Q(u,c) =0}

Qo A0 < composition of Qg as per the Boolean expression op A —o¢

dq(u)((s,¢), (a,0)) ¢ maxgeg Qopnr-oc ({5, €), g, (@, 0))
return (U, ug, 0y, 0¢)

Zero-shot via planning over the RM: To obtain the SM that solves a given RM, we first plan
over the reward machine (using value iteration, for example) to produce action-values for each
transition. We then select skills for each SM state greedily by applying Boolean composition to
skill primitives according to the Boolean expressions defining: (i) the transition with the highest
value (propositions to eventually satisfy); and (i1) the transitions with zero value (constrains to
always satisfy). This process is illustrated by Figure 9.4, and the full pseudo-code is shown in
Algorithm 10. Since the skills per SM state are selected greedily, the policy generated by this SM
is recursively optimal [Hutsebaut-Buysse et al. 2022]—that is, it is locally optimal (optimal for
each sub-task) but may not be globally optimal (optimal for the overall task). Interestingly, we
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show in Theorem 9.2 that this policy is also satisficing (reaches an accepting state) if we assume
global reachability—all FSM transitions (that is all Boolean expressions o € 22" are achievable
from any environment state. This is a more relaxed version of the assumption “any state is
reachable from any other state” that is required to prove optimality in most RL algorithms, since
an agent cannot learn an optimal policy if there are states it can never reach.

Theorem 9.2. Let Rs a4 = (U, ug, 0y, d,) be a satisfiable RM where all the Boolean expressions
o defining its transitions are in negation normal form (NNF) [Robinson and Voronkov 2001 ] and
are achievable from any state s € S. Define the corresponding SM Q% 4 = (U, uo, 6y, 0g) with

dq(u)({s, ), (a,0)) = max Q1) ({5 €), 9, {0, 0)

where op = argmaz, Q*(u,0), oc = /{0 | Q*(u,0) = 0}, and Q*(u, o) is the optimal
QO-function for Rs a. Then, m(s,u) € argmax, 4 dg(u)((s, ¢), (a,0)) is satisficing.

Proof. This follows from the optimality of Boolean skill composition and the optimality of
value iteration, since each transition of the RM is satisfiable from any environment state.

]

Theorem 9.2 is critical as it provides soundness guarantees, ensuring that the policy derived
from the skill machine will always satisfy the task requirements.

Few-shot via RL in the environment: Finally, in cases where the composed skill 6 (u)((s, ¢), (a, 0))
obtained from the approximate SM is not sufficiently optimal, we can use any off-policy RL
algorithm to learn the task-specific skill Q7 (s, u,a) few-shot. This is achieved by using the
maximising Q-values max{yQr, (1 —7)dq} in the exploration policy during learning. Here, the
discount factor ~y determines how much of the composed policy to use. Consider Q-learning, for
example: during the e-greedy exploration, we use a <— arg max 4 max{vQr, (1—7)dq} to select
greedy actions. This improves the initial performance of the agent where 7Q7 < (1 —~)dg, and
guarantees convergence in the limit of infinite exploration, as in vanilla Q-learning. Algorithm 11
shows the full pseudo-code for this process.

9.2 Experiments

We evaluate our approach in three domains, including a high-dimensional, continuous control
task. In particular, we consider the Office Gridworld (the same one used in Chapter 1), the
Moving Targets domain and the Safety Gym domain. We briefly describe the domains and
training procedure here, and provide more hyperparameter settings in the appendix.

Office Gridworld [Icarte et al. 2022]: For clarity, we illustrate the environment again and an
example temporal logic task in it in Figure 9.5. Tasks here are Aspeciﬁed over 10 propositions
P={AB,C,D,% & X % X" #} and | constraint C = {*k}. We learn the skill primitives
Q (visualised by Figure 9.6) using goal-oriented Q-learning [Nangue Tasse et al. 2020a], where
the agent keeps track of reached goals and uses Q-learning [Watkins 1989] to update the WVF
with respect to all previously seen goals at every time step.
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Algorithm 11: Zero-shot and Few-shot Q-learning with skill machines

Input  : S, A P,C. (U, up, by, 00),7,
Initialise : Q(s, u,a)
1 foreach episode do

2 Observe initial state s € S and propositions | € 27, RM state u < u, and constraints

c<+ 0
3 while episode is not done do
4 if zero-shot then
5 a < argmax 0g(u)((s,c), (a,0))

a
6 else
/* Fewshot by using dg in the behaviour policy */

7 a <

arg max (max{vQ(s,u,a), (1 —v)dg(u)((s,c),{a,0))}) if Bernoulli(l —¢) =

sample a € A otherwise
8 Take action a and observe the next state s’ and true propositions [’
9 Get reward r < 0, (u)(s, a, s'), true constraints ¢ <— cU (({ & ') N C),
10 and the next RM state v’ < 0, (u, ")
1 if u # u’ then ¢ « ()
12 if s’ or u' is terminal then
13 Q(s,u,a) & r
14 else
15 Q(s,u,a) <& [r—i—ymax@(s’,u’,a’)}
a/
16 s+ s and u « v’

(~#A—,0) ry—

- A% Uy #A %

(—..7/\—”. 0) (i/\ %, 1) -8 A % Uy

ik WO Y | @ranay Ot
3%,0) (s%,0)
(= =%, 0) \./ (A —%,0) ‘Z/‘ﬁ*T \ / TEAﬁ*
/ \ /t \
(s%,0) (sk,0) e A KA % R
P g('/\j*'o) @(gﬂ*'o) g(% ﬁQ* *Qs) - A\ (Qg/hQ*/ﬁQ)_‘B?A_‘*
st?lrt start
(a) Office Gridworld (b) Reward Machine (c¢) Skill Machine

Figure 9.5: Illustration of (a) the office gridworld where the blue circle repre-
sents the agent; (b) the reward machine for the task “deliver coffee and mail
to the office without breaking any decoration”, given by the LTL specification
(F(eeAX (F(RAX(F#))))V(F(RAX(F(AX(FF)))))) A (G-%); (c) the
skill machine obtained from the reward machine which can then be used to achieve the task
specification zero-shot—the red trajectory in (a). The nodes labeled ¢ represent terminal states.

Moving Targets Domain [Nangue Tasse ef al. 2020a]: This is a canonical object collection
domain with high dimensional pixel observations (84 x 84 x 3 RGB images). We illustrate the
environment in Figure 9.7. The agent here needs to pick up objects of various shapes and colours;
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Figure 9.6: The policies (arrows) and value functions (heat map) of the primitive tasks in the
Office Gridworld. These are obtained by maximising over the goals of the learned WVFs.

collected objects respawn at random empty positions similarly to previous object collection
domains [Barreto et al. 2020]. There are 3 object colours—beige (L), blue (M), purple (M)—
and 2 object shapes—squares (£), circles (©). The tasks here are defined over 5 propositions
P = {1, M = O} and 5 constraints C = P. We learn the corresponding skill primitives with
goal-oriented Q-learning, but using deep Q-learning [Mnih et al. 2015] to update the WVFs.

Safety Gym Domain [Ray ef al. 2019]: This domain (illustrated in Figure 9.1) has a continuous
state space (S = R%) and continuous action space (A = R?). The agent here is a point mass that
needs to navigate to various regions defined by 3 propositions (P = {Q, @,Q}) corresponding
to its 3 lidar sensors for the red cylinder (i), the green buttons (@), and the blue regions (Q).
The agent, 4 buttons and 2 blue regions are randomly placed on the plane. The cylinder is
randomly placed on one of the buttons. We first learn the 4 base skill primitives corresponding
to each predicate (with constraints C = {(Q}), with goal-oriented Q-learning Nangue Tasse et al.
[2020a] but using Twin Delayed DDPG [Fujimoto ef al. 2018] to update the WVFs.

9.2.1 Zero-shot and few-shot temporal logics

We use the Office Gridworld as a multitask domain, and evaluate how long it takes an agent
to learn a policy that can solve the four tasks described in Table 9.1. The tasks are sampled
uniformly at random for each episode. In all of our experiments, we compare the performance
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Figure 9.7: Moving Targets domain

Task Description — LTL

1 Deliver coffee to the office without breaking decorations —
(F(#AX(F#))A(G—%)

2 Patrol rooms A, B, C, and D without breaking any decoration —

(F(ANX (F(BAX(F(CANX(FD))))))) A (G —%)

3 Deliver coffee and mail to the office without breaking any decoration —

((F (% £ X (P (537X (F$)))) V (F (B4 X (F (34X (Fi)))))) A
(G—3%)

4 Deliver mail to the office until there is no mail left, then deliver coffee to office
while there are people in the office, then patrol rooms A-B-C-D-A, and never break a
decoration —

(F(RIAX (F(#AX (AU (-RTARAX (F (9 AX (80U (-4 A#AX
(FANX(F(BAX(F(CANX(F(DANX(FA)))))))))))))))))) A (G %)

Table 9.1: Tasks in the Office Gridworld. The RMs are generated from the LTL expressions.

of SMs without further learning and SMs paired with Q-learning (QL-SM) with that of regular
Q-learning (QL) and the following state-of-the-art RM-based baselines [Icarte e al. 2022]:
(i) Counterfactual RMs (CRM): This augments Q-learning by updating the action-value
function at each state (Q(s, u, a)) not just with respect to the current RM transition, but also with
respect to all possible RM transitions from the current environment state. This is representative of
approaches that leverage the compositional structure of RMs to learn optimal policies efficiently.
(i1) Hierarchical RMs (HRM): The agent here uses Q-learning to learn options to achieve each
RM state-transition, and an option policy to select which options to use at each RM state that are
grounded in the environment states. This is representative of option-based approaches that learn
hierarchically-optimal policies. (iii) Reward-shaped variants (QL-RS, CRM-RS, HRM-RS):
The agent here uses the values obtained from value iteration over the RMs for reward shaping,
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on top of the regular QL, CRM, HRM algorithms. This is representative of approaches that
leverage planning over the RM to speed up learning.
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Figure 9.8: Average returns over 60 independent runs during training in the Office Gridworld.
The shaded regions represent 1 standard deviation. For each training run, we evaluate the agent
e-greedily (e = 0.1) after every 1000 step and report the average total rewards obtained over
each 40 consecutive evaluation. The black dotted line indicate the point at which the baselines
have trained for the same number of time steps as the skill primitives pretraining.

In addition to learning all four tasks at once, we also experiment with Tasks 1, 3 and 4 in isolation.
In these single-task domains, the difference between the baselines and our approach should
be more pronounced, since QL, CRM and HRM now cannot leverage the shared experience
across multiple tasks. Thus, the comparison between multi-task and single-task learning in this
setting will evaluate the benefit of the compositionality afforded by SMs, given that the 11 skill
primitives used by the SMs here are pretrained only once for 1 x 10° time steps and used for all
four experiments. For fairness towards the baselines, we run each of the four experiments for
4 x 10° time steps.

The results of these four experiments are shown in Figure 9.8. Regular Q-learning struggles
to learn Task 3 and completely fails to learn the hardest task (Task 4). Additionally, notice
that while QL and CRM can theoretically learn the tasks optimally given infinite time, only
HRM, SM, and QL-SM are able to learn hard long horizon tasks in practice (like task 4). This is
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(a) Task 1 zero-shot (SM) (b) Task 2 zero-shot (SM)

(d) Task 1 few-shot (QL-SM) (e) Task 2 few-shot (QL-SM) (f) Task 3 few-shot (QL-SM)

Figure 9.9: Agent trajectories for various tasks in the Office Gridworld (Table 9.1) using the
skill machine without further learning (top) and with further learning (bottom).

because of the temporal composition of skills leveraged in HRM, SM, and QL-SM. In addition,
the skill machines are being used to zero-shot generalise to the office tasks using skill primitives.
Thus using the skill machines alone (SM in Figure 9.8) may provide sub-optimal performance
compared to the task-specific agents, since the SMs have not been trained to optimality and
are not specialised to the domain. Even under these conditions, we observe that SMs perform
near-optimally in terms of final performance, and due to the amortised nature of learning the
WVF will achieve its final rewards from the first epoch.

It is apparent from the results shown in Figure 9.8 that SMs paired with Q-learning (QL-SM)
achieve the best performance when the zero-shot performance is not already optimal. This
can also be observed from the trajectories of the agent with and without few-shot learning
(Figure 9.9). Additionally, SMs with Q-learning always begin with a significantly higher reward
and converge on their final performance faster than all baselines. The speed of learning is due to
the compositionality of the skill primitives with SMs, and the high final performance is due to
the generality of the learned primitives being paired with the domain-specific Q-learner. In sum,
skill machines provide fast composition of skills and achieve optimal performance compared to
all benchmarks when paired with a learning algorithm.

Finally, we run 2 experiments to demonstrate the performance of our zero-shot and few-shot
approach when the global reachability assumption does not hold.

1. When the reachability assumption is not satisfied in some initial states: In the first
experiment (Figure 9.10), the agent needs to solve task 1 of Table 9.1 ((F (@ A X (F #)))A
(G —*)), but we modify the environment such that one of the coffee locations is absorbing
(a sink environment state). This breaks the global reachability assumption since the agent
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Figure 9.10: Results for the task with LTL specification (F(# A X (F #))) A (G —%) when
the global reachability assumption does not hold.
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Figure 9.11: Results for the task with LTL specification (F #) A (—# U @) where the global
reachability assumption is not satisfied.

can no longer reach the office location after it reaches the absorbing coffee location. As
a result, we observe that the zero-shot agent (SM) is even more sub-optimal than before
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because it cannot satisfy the task when it starts at locations that are closer to the absorbing
coffee location. However, we can observe that the few-shot agent (QL-SM) is still able
to learn the optimal policy, starting with the same performance as the zero-shot agent.
Note that the hierarchical agent (HRM) also converges to the same performance as our
zero-shot agent because it also tries to reach the nearest coffee location.

When the reachability assumption is not satisfied in all initial states: In the second
experiment (Figure 9.11), the agent needs to solve the task with LTL specification (F' #) A
(—# U s)—the environment is still modified such that one of the coffee locations is
absorbing. Here, the Boolean expression # A # is not satisfiable since there is no state
where both propositions (@ and ¥) are true. Hence, this can be seen as the worst-case
scenario for our approach (without outright making the task unsatisfiable), since # A #
is the Boolean expression greedily selected in the starting RM state. As a result, our
zero-shot agent completely fails to solve this task. Even in this case, we can observe that

the few-shot agent is still able to learn the optimal policy.

9.2.2 Zero-shot transfer with function approximation

Task Description — LTL

1

2

Pick up any object. Repeat this forever.
—F(OVE)

Pick up blue then purple objects, then —

” . 40 [ Composed
objects that are neither blue nor purple. o = Lo
Repeat this forever. — F'(lA X (F(®A 53
X(F(OVE)A-(RVE))))) o2
Pick up blue objects or squares, but 0 20
never blue squares. Repeat this forever. %D
— (FERVE)A(G-(EAE)) § 10

Pick up non-square blue objects, then
non-blue squares in that order. Repeat
this forever. — F (-2 AB) A X (F(EA

—H)))

Table 9.2: Tasks in the Moving Targets domain.
To repeat forever, the terminal states of the RMs
generated from LTL are removed, and transitions
to them are looped back to the start state.

Oaaiﬁai

mEx_ 1 2 3

Tasks

4

Figure 9.12: Average returns over 100 runs
for tasks in Table 9.2. The agent and object
positions are randomised and objects re-
spawn randomly when collected.

We now demonstrate our temporal logic composition approach in the Moving Targets domain
where function approximation is required. Figure 9.12 shows the average returns of the optimal
policies and SM policies for the four tasks described in Table 9.2 with a maximum of 50 steps
per episode. Our results show that even when using function approximation with sub-optimal
skill primitives, the zero-shot policies obtained from skill machines are very close to optimal
on average. We also observe that for very challenging tasks like Tasks 3 and 4 (where the
agent must satisfy difficult temporal constraints), the compounding effect of the sub-optimal
policies sometimes leads to failures. Finally, we provide a qualitative demonstration of our
method’s applicability to continuous control tasks using Safety Gym, a benchmark domain used
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Task Description — LTL

1 Navigate to a button and then to a cylinder. — (F(@ A X (F (@)))
Navigate to a button and then to a cylinder while never entering blue regions
— (Fle AX(F ) A (G -0)
3 Navigate to a button, then to a cylinder without entering blue regions, then to a button
inside a blue region, and finally to a cylinder again.
— Fle AX(F (@A -@) A X(F((0 A @) A X(FO)))))
4 Navigate to a button and then to a cylinder in a blue region. — (F(@ A X (F @A Q@)))
5 Navigate to a cylinder, then to a button in a blue region, and finally to a cylinder again.
— (F@AX(F (e A@) A X(@)))
6  Navigate to a blue region, then to a button with a cylinder, and finally to a cylinder
while avoiding blue regions. — (F(Q A X(F((@ A) A X((F &) A (G-@))))))

Table 9.3: Tasks in the Safety Gym domains. The RMs are generated from the LTL expressions.

o o

o
R T R o
o ()

(d) Task 4 (e) Task 5 (f) Task 6

Figure 9.13: Visualisations of the trajectories obtained by following the zero-shot composed
policies from the skill machine for tasks in Table 9.3.

for developing safe RL methods [Ray ef al. 2019]. We define a set of increasingly complex tasks
(Table 9.3) and visualise the resulting trajectories after composing the agent’s learned primitive
skills. Figure 9.1 illustrates the trajectory that satisfies the task requiring the agent to navigate
to a blue region, then to a red cylinder, and finally to another red cylinder while avoiding blue
regions.
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9.3 Related works

Prior works built on successor features (SF) have shown some promise in solving temporal tasks
by using linear preferences over features [Barreto ef al. 2020], while Alver and Precup [2022b]
show that an SF basis can be learned that is sufficient to span the space of such linear tasks.
By contrast, our framework allows for both spatial composition (including operators such as
negation that others do not support) and temporal composition such as LTL.

A popular way of achieving temporal composition is through the options framework [Sutton et
al. 1999]. Here, high-level skills are first discovered and then executed sequentially to solve a
task [Konidaris and Barto 2009]. Barreto et al. [2019] leverage the SF and options framework
and learn how to linearly combine skills, chaining them sequentially to solve temporal tasks.
However, these approaches offer a relatively simple form of temporal composition. By contrast,
we are able to solve tasks expressed through regular languages zero-shot, while providing
soundness guarantees.

Approaches to defining tasks using human-readable logic operators also exist. Li et al. [2017]
and Littman et al. [2017] specify tasks using LTL, which is then used to generate a reward
signal for an RL agent. Camacho et al. [2019] perform reward shaping given LTL specifications,
while Jothimurugan et al. [2019] develop a formal language that encodes tasks as sequences,
conjunctions and disjunctions of subtasks. This is then used to obtain a shaped reward function
that can be used for learning. These approaches focus on how to improve learning given such
specifications, but we show how an explicitly compositional agent can immediately solve such
tasks using WVFs without further learning.

9.4 Conclusion

We proposed skill machines—finite state machines that can be learned from reward machines—
that allow agents to solve extremely complex tasks involving temporal and spatial composition.
We demonstrated how skills can be learned and encoded in a specific form of goal-oriented
value function that, when combined with the learned skill machines, are sufficient for solving
subsequent tasks without further learning. Our approach guarantees that the resulting policy
adheres to the logical task specification, which provides assurances of safety and verifiability to
the agent’s decision making, important characteristics that are necessary if we are to ever deploy
RL agents in the real world. While the resulting behaviour is provably satisficing, empirical
results demonstrate that the agent’s performance is near optimal; further fine-tuning can be
performed should optimality be required, which greatly improves the sample efficiency. We see
this approach as a step towards truly generally intelligent agents, capable of immediately solving
human-specifiable tasks in the real world with no further learning.
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Chapter 10

Safe Sim-to-Real

This chapter is based on the published work
“Facilitating Safe Sim-to-Real through Simulator Abstraction and Zero-shot Task Composition”
[Love et al. 2022], jointly lead with Tamlin Love and Devon Jarvis, in collaboration with
Branden Ingram, Steven James, and Benjamin Rosman.

While we have shown how to construct agents with all the FIRe desiderata (g2, s‘/ ,), there
is still one glaring issue to be addressed. As in much of RL [Arumugam et al. 2019; Zhao et al.
2020; Osinski et al. 2020], all of our experiments here occurred in non physical domains, such
as games and physics simulators.

Since exploration is a key component of RL, it is often infeasible and unsafe to train an agent
in anything but a non-physical system, where the cost and damage from exploration can be
mitigated or avoided. Thus, deploying an RL agent on a physical system remains an open
challenge, made worse by the “reality gap”. This describes the fact that no simulator is perfectly
able to replicate reality. The consequence is that an agent which performs well in simulation is
not guaranteed to perform comparably in the real-world.

Due to the discrepancy between simulators and the real-world, the reality gap is an example of a
domain adaptation [Wang and Deng 2018; Jiang et al. 2021] problem in which an agent must
train in a source domain but generalise to performing well in another target domain [Matas et al.
2018]. The degree of discrepancy between the domains depends on the fidelity of the simulator
itself, as well as the complexity of the task the agent is being trained to perform. Thus, the goal
of domain adaptation is for the agent to learn robust and broadly useful features and policies
which are common between the source and target domains. Importantly, this does not necessitate
that the source domain be a perfect replica of the target domain. Consequentially, it does not
require a simulator as the source domain to be any higher fidelity than is useful for learning
a policy which transfers between domains. This is a consideration which we aim to leverage
with the goal of providing a safe robot learning framework that also accommodates high sample
complexity learning algorithms and compositional generalisation of skills.

We introduce a framework which can facilitate a combinatorial explosion of skills within a
robotics domain while utilising physical system training sparingly, and only in a safe manner.
Our framework is depicted in Figure 10.2 and our design philosophy can be summarised as
follows: the more difficult the task, the less physical system training should be done. To avoid
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Angle:0 degrees

C) d)

Figure 10.1: Visualisation and real world correspondence of the low fidelity simulation of the
real Four Rooms domain. a) The agent in the abstract skill-level simulator. b) Centres of each
grid-state displayed on top of the overhead camera feed. ¢) Segmentation mask for robot and

colour tags identification in the overhead camera feed. d) Localisation of the robot with position
and angle in the real world Four Rooms domain.

training in a complex continuous space simulator at the level of actuators, we instead use an
abstract simulator at the level of primitive skills. Learning the primitive skills is the only point
at which we train on a physical system. This provides us with an abstraction, allowing us to
thereafter operate in a discrete, higher-level of simulation where we train an agent to perform a
set of low-level tasks (one step higher in abstraction than primitive skills). This is easy to do in
simulation, but importantly due to the abstraction of the simulator there will be less discrepancy
when transferring these tasks to the real-world. This is because the abstract simulator would
only need to match the real-world in dynamics relative to primitive skills, rather than the far
more intricate level of actuator dynamics.
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Figure 10.2: Hierarchical abstraction of simulation which aims to leverage the benefits of training
an agent in the real world while containing the risk of damage. The more dangerous a task is to
train the higher the level of abstraction in training, containing the risk of real world training to
the most basic skills. Similarly, the more possible tasks there are at a level of abstraction the less
time is needed for individual training, leading to zero-shot skill composition and temporal logic.

Having learned the low-level tasks, we are then able to easily learn complex behaviours in a
simple simulator, leveraging recent advances in RL. This allows us to draw on techniques to
generalise to combinatorially many higher-level tasks and tasks requiring temporal logic in a
zero-shot manner. Thus, no further training is required for these more difficult tasks as long as
they can be composed from a set of low-level tasks in the same domain. The effect of this is that
for complex tasks, we can avoid training on a physical system, and instead train in simulation in
a way that allows zero-shot generalisation onto the hardware. We describe our entire framework
in more detail in Section 10.1.

10.1 Leveraging simulator abstraction and skill machines

Our approach to mitigating the reality gap can be summarised in three steps, and shown
graphically in Figure 10.2. These steps involve firstly abstracting the simulator into what we
refer to as a “skill-level simulator”, from which low-level tasks are learned. Secondly, zero-shot
value function composition is utilised to compose tasks in order to solve more complex problems.
Thirdly, we utilise temporal logics in order to generate task sequences.

10.1.1 Skill-level simulator

To avoid the difficulties associated with using a high fidelity simulator for training we instead
work with an abstract simulator which captures only the necessary structure in the source domain
which is common with the target domain. This is achieved by training a set of primitive skills
on a physical system. It is key that these primitive skills be small and easy enough to learn
that training is safe and quick, avoiding the usual pitfalls of training on a physical system.
Additionally, the use of early training on the physical system has been used to make downstream
sim-to-real easier in prior work [Golemo et al. 2018; Jeong et al. 2019; Hanna and Stone 2017;
Desai et al. 2020]. This abstracts the simulator away from the level of actuators and instead
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simulates the environment in terms of discrete primitive skills. By learning in the skill-level
simulator we are then able to train policies for low-level tasks (sequence of skills). Figure 10.3
shows the returns obtained during training of the WVFs and VFs of said tasks. Similarly to
Chapter 5, we observe that learning WVFs has the additional benefit of faster training than
regular VFs—since the WVF learns how to achieve all goals leading to better goal-directed
exploration during learning.

WVF
VF

=

Average Return

0 2000 4000 6000 8000 10000
Episodes

Figure 10.3: Average returns per episode obtained when learning WVFs and regular VFs in the
Four Rooms simulation. The shaded regions represent 1 standard error over the returns obtained
when training the following 10 tasks: Navigate to the “bottom-left room”, ”bottom-right room”,

29 9 99

’top-right room”, “top-left room”, “’front of left door”, front of top door”, ’front of right door
and “front of bottom door”.

10.1.2 Value function composition using WVF's

Our second step is to leverage the results from Part II of zero-shot value function composition,
described in Chapter 6, which provides super-exponential growth in the number of possible
tasks an agent can perform just from learning low-level tasks in the skill-level simulator. This
alone speeds up learning significantly in our framework. However, due to the discrete nature of
the skill-level simulator and resulting value functions it is necessary to perform error correction
when transferring to the continuous real-world. Error correction would then be performed after
every primitive skill which is time-consuming and a potential drawback of our framework.
Thus, we leverage another level of abstraction introduced in previous chapters: temporal logic
composition (Chapter 9).

10.1.3 Temporal logics using skill machines

Temporal logic of task composition defines a problem as a sequence of steps to be completed by
modelling the sequence with an RM. Thus the task of making a cup of coffee would be split
into adding coffee granules to a cup, adding sugar, pouring hot water, etc. This is beneficial
as we can use the RM to perform error correction only at the level of transitions between RM
states as opposed to after transitions in the skill-level states (after each skill is performed).
Thus, we have multiple levels of abstraction, each serving a purpose in minimising physical
risks, speeding up learning and reducing the amount of error correction needed when switching
from sim-to-real respectively. The aim of this work is to provide a helpful framework for robot
sim-to-real generalisation by applying hierarchical and compositional techniques from RL to
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split a learning problem into multiple levels of abstraction. The benefit is that by training a
very few easy and safe primitive skills on a physical system the framework can facilitate a
combinatorial explosion of skills within a domain, culminating in zero-shot generalisation to
temporal logic sequences of complex tasks.

10.2 Experiments

a) Task 1 Trajectory

b) Task 2 Trajectory

Figure 10.4: Desired trajectories for the experiment 1 (shown in a) and experiment 2 (shown
in b). Note that for experiment 2 the door between the bottom left (source) and bottom right
(target) is closed forcing the robot to take the longer path through the rooms. The RM and
temporal logics allows for zero-shot generalisation to such changes in the environment, unlike
naive Q-learning.

In order to test the benefits of our approach, we conducted a number of experiments in a real-
world “Four Rooms” domain on a Kobuki TurtleBot2. The “Four Rooms” domain consists of
four square rooms, connected by doors which can be open or closed. In the skill-level simulation,
the domain is represented by a discrete grid of cells connected by a move-forward skill (each
room being 5x5 cells), with goal states in the centres of rooms. Three primitive actions (move
forward one cell, turn left 90°, turn right 90°) were hand-coded on the robot. The policy of the
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robot was trained using the following three levels of complexity: naive Q-learning, value function
composition (WVFs) from naive Q-learning with low-level tasks and lastly with temporal logics
(skill machines).

The error-correction procedure was designed to be a simple and naive approach to match the
robot’s state to that of the simulated agent. We suspended a webcam above the domain and placed
colour markers on the robot to allow for its location and orientation to be tracked (shown in
Figure 10.1. A grid of coordinates was superimposed on the webcam feed to map the simulated
gridworld to the real world. The error-correcting procedure attempts to move the robot to the
corresponding discretised position of the simulated agent following the same policy. As such, an
error-correcting step may consist of a rotation or forward movement towards the coordinates of
the grid cell.

Successful | Total Time (s) C Time (%) | Distance from Goal (pixels) | Number of C
Runs Average | STD | Average | STD | Average STD Average | STD
Transferred Policy, No C 3/5 12.80 0.01 0 0 38.78 13.49 0 0
Transferred Policy + C 5/5 199.83 | 3498 | 9350 | 1.44 5.59 2.76 175 32.81
VEC Policy + C 5/5 205.72 | 29.20 | 93.53 | 0.82 4.35 2.98 1794 | 28.32
Temporal Logics + C 3/3 49.55 2.27 7398 | 1.13 | 10.21 3.73 34.33 2.05

Table 10.1: The results for the first set of experiments (goal state: top-right, all doors open). The
abbreviation C here refers to Corrections.

In the first set of experiments, we consider the problem of moving from the bottom-left room
to the top-right. For naive Q-learning this is learned directly as part of the broader training
of navigation the entire domain, where the robot is trained to move from any source and to
any target room where each combination is treated as its own task. For the value function
composition the low-level tasks involve the agent learning to move to any two target rooms.
To reach one specific target room, the intersection between two low-level task rooms is used.
Finally, for the temporal logics instead of learning to move between a sequence of rooms to
reach the target, the transition between rooms is modelled with an RM and so the robot is only
required to learn how to move between adjacent rooms with the composed value functions. For
example, the RM used to perform task 1 is shown in Figure 10.5, with desired trajectories shown
in Figure 10.4. Thus, the full set of methods we compare are: a simulated naive Q-learning policy
transferred directly to the robot (no error-correction), the same policy with error-correction after
every discrete action, a composed value-function policy with error-correction (which we call
the VFC Policy) and a policy obtained using temporal logics with error correction after each
RM state (so that error correction only happens at doorways and room centres). Each method is
evaluated using the metrics of “successful runs” (the number of successful runs, where a run
1s considered failed if the robot crashes into a wall), “total time” (the total time in seconds to
perform a run), “correction time” (the percentage of time spent correcting the robot’s position),
“distance from goal” (the distance, in pixels on the webcam feed, from the final goal at the end
of the run), and “number of corrections” (the number of error-correction steps performed in a
run). Results are averaged over the number of successful runs and detailed in Table 10.1.

While the directly transferred policy executes quickly, it has a poor success rate, and even the
runs that do succeed end up relatively far from the centre of the room. Applying error-correction
after every step of the policy greatly improves the success rate and final position accuracy, at
the cost of time. The benefits of the composed value functions is not seen on the real world
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Figure 10.5: Example of an RM used to complete task 2 in the Four Rooms domains. The agent
will navigate from the bottom left to top left and finally to the top right. dyest, dnorth, dsouth, 15
ro and r3 are respectively propositions that are true when the agent is in front of the west door,
in front of the north door, in front of the south door, in the middle of the top-left room, in the
middle of the top-right room in the middle of the bottom-right room. The U; symbols represent
state which track the sequence of propositions that are used and correspond to value functions
which are relevant to the state.

generalisation but significantly speeds up the training time of robots using our framework.
Finally, the temporal logics method strikes a balance between speed and safety, achieving a
comparable success rate to the error-correction after ever step but using less error corrections
and time to complete the task. In the second set of experiments, the task is to move from the
bottom-left room to the bottom-right room. However, the door between the two rooms is closed,
forcing the robot to take a less-direct path. With a greater distance to traverse and more doorways
to pass through, this represents a harder task for the robot. The same methods are evaluated
using the same metrics as before, tabulated in Table 10.2. From these results we may draw the
same conclusions. Naive Q-learning without error correction is not a reliable procedure for
completing the task, and does significantly worse on this more challenging second task which
requires a longer sequence of accurate decisions. The value function composition method (we
omit naive Q-learning with error correction since it is equivalent at test time to the value function
composition but trains significantly slower) is safe and reliably completes the task but is very
slow. Similarly to the first task, temporal logics with state-machine error corrections is both
reliable and efficient at completing the task, demonstrating the benefits of the final level of
abstraction.

Successful | Total Time (s) C Time (%) | Distance from Goal (pixels) | Number of C

Runs Average | STD | Average | STD | Average STD Average | STD

Transferred Policy, No C 0/3 N/A N/A N/A N/A N/A N/A N/A N/A
VEC Policy + C 3/3 304.03 | 6.13 93.57 | 0.14 3.46 1.42 265.67 | 6.18
Temporal Logics + C 4/4 154.04 | 29.65 | 86.26 | 2.66 6.17 1.71 125.25 | 27.84

Table 10.2: The results for the second set of experiments (goal state: bottom-right, bottom door
closed). The abbreviation C here refers to Corrections.
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10.3 Related works

Due to the potential benefits, addressing the reality gap has received a significant amount
of attention in recent years from multiple fields, such as robotics and computer vision. The
problem of transferring control policies from simulation to the real world can be viewed as an
instance of domain adaptation, where a model trained in a source domain is transferred to a
new target domain. One of the key assumptions behind these domain adaption methods is that
the different domains share common characteristics such that representations and behaviours
learned in one will prove useful for the other [Peng e al. 2018]. However, most approaches
tend to either increase the sample complexity of training or rely on a fine-tuned adaptation to
a simulator which may not generalise in its own right. For the first set of approaches which
increase sample complexity, the most promising are domain randomisation [Tobin et al. 2017]
and dynamics randomisation [Peng ef al. 2018]. This entails adding noise to some aspect of the
simulator such that a model cannot learn to exploit idiosyncrasies in the simulator to artificially
improve performance. Additionally, if by adding noise the simulator is randomly pushed towards
being more reflective of the real world then the model will generalise significantly better. Thus,
these methods rely on the real-world dynamics being within the sample space of the simulator
dynamics. In general the noise is often added to the low-level dynamics of the simulator, but can
also be added to the hyper-parameters of the simulator. Our approach avoids utilising noise due
to the nature of our abstraction, where we can be certain skill-level dynamics of the simulator
overlaps with that of the real world.

Other methods have aimed to learn a network which adapts a simulator policy to a real-world
domain [Ganin et al. 2016; Golemo et al. 2018] and generally aim to push the model to
learn invariant features that are common between source and target domain [Taigman et al.
2016; Rusu et al. 2017; Tzeng et al. 2014]. This latter group of methods includes learning to
adjust a simulator in a manner which mitigates the discrepancies between the simulator and
real-world domains. For example the Neural-Augmented Simulation (NAS) trains a recurrent
neural network to predict the discrepancies between the simulator and reality and then uses the
network to augment and adapt the simulator to have more realistic dynamics [Golemo et al.
2018]. This approach improves upon the even more tailored approaches of learning a forward
model of the real-world dynamics [Punjani and Abbeel 2015; Fu et al. 2016; Mordatch et al.
2016]. Unfortunately, due to the accumulation of errors over time, unless any of these learned-
simulator based approaches are nearly perfect they will be limited to short time horizons, which
is prohibitive for training RL agents. Thus, there is still a need to explore new ideas to improving
sim-to-real generalisation. One recent idea of interest is the use of a small amount of real-world
data at the beginning of a training pipeline which serves to improve the simulator’s accuracy
[Golemo et al. 2018; Jeong et al. 2019]. Specifically, this small amount of real-world data is used
to train the simulator error prediction or an inverse-RL model. In this work we begin similarly
with a small amount of real-world training. However, to the best of our knowledge, addressing
the reality gap by simulating the environment at a more abstract level and employing hierarchical
RL has not been explored. Unlike these approaches we leverage the fact that it is advantageous
to utilise an abstracted simulator using skill-level dynamics rather than actuator-level dynamics.
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10.4 Conclusion

To date the application of RL in robotics has been limited due to the danger of training real
world systems. This has meant training has traditionally required the use of a simulator to avoid
the risk of damaging expensive equipment. However, transferring a policy learned in simulation
to the real world is not trivial due to the reality gap. We demonstrate a novel framework for
solving this problem by training a robot in an abstracted simulator we dubbed the “skill-level
simulator” and leveraging value function composition with temporal logics from prior work in
RL. This framework allowed a robot to learn a set of primitive actions which can then be used to
learn low-level tasks in the skill-level simulator. These low-level task value functions can then
be composed in a combinatorial and sequential fashion without the need for additional training.
This approach allowed us to solve complex problems while only needing to train a small set of
primitive skills in the real world and yet still outperformed comparative baselines. The abstracted
simulator and error correcting mechanisms also alleviated the risks associated with traditional
sim-to-real systems. We believe this work provides a powerful first framework for training
complex robot policies which balance safety, training efficiency and reliability considerations.
Importantly, many aspects of the framework are self-contained, such as the error correction,
which is left purposefully basic in this work, or method of determining the value function used
to navigate the domain. Thus, there is room for future work to improve upon pieces of the
framework while still utilising the demonstrated benefits of the levels of abstraction.
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Chapter 11

Conclusion

This thesis has explored the fundamental challenges in building artificial agents that can ef-
fectively assist humans in a variety of tasks, embodying the FIRe desiderata of flexibility Ntf ,
instructability gav, and reliability @ Through an examination of reinforcement learning meth-
ods and their limitations, particularly in addressing these desiderata, we have identified the need
for a principled framework that leverages the principle of compositionality.

By extending the existing logical composition framework of Nangue Tasse et al. [2020b] to
stochastic tasks with arbitrary rewards ga¥, introducing the concept of world value functions
(WVFs) to encode knowledge about environment dynamics with all possible goal-reaching
tasks in it s'f , and developing methods for agents to provably understand and follow language
instructions , this work makes significant strides towards addressing these challenges. Our
contributions span across multiple facets of Al research, from theoretical advancements in task
composition and safety guarantees to algorithmic implementations and evaluations for empirical
results. We have demonstrated how our framework enables agents to efficiently learn and
generalise across tasks, ensuring robust performance irrespective of the specific RL algorithms
used for learning.

11.1 Discussion and future work

While this thesis makes significant progress towards the goal of general purpose agents, there is
of course much room for improvement. In fact, each chapter of this thesis opens up a number of
interesting and relevant questions for future works.

Safe reinforcement learning

This chapter investigates a new approach towards safe-RL by asking the question: Is a scalar
reward enough to solve tasks safely? While we show that it is indeed enough, both theoretically
and experimentally, the current approach is only applicable to unsafe terminal states—which
only covers tasks that can be naturally represented by stochastic-shortest path MDPs. Hence this
may not be applicable to all conceivable safe RL settings. However, since our approach relies
on the concept of MDP diameter and controllability, which are properties of the entire MDP
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and not just the terminal states, our approach may also be extendable in future work to other
settings. Finally, given that other popular RL settings like discounted MDPs can be converted
to stochastic shortest path MDPs [Bertsekas 1987; Sutton and Barto 1998], a promising future
direction could be to find the dual of our results for other theoretically equivalent settings.

We also only consider terminal states that are maximally unsafe. This leads to very risk-averse
policies, as shown by the trajectories produced by our TRPO-Minmax agent. Additionally, it may
be desirable for an agent to accommodate different degrees of safety—for example “breaking
a vase” is less unsafe than “hitting a baby”. Our focus on scalar rewards at unsafe states leads
to a natural future extension to the case of different degrees of safety. Since the Minmax reward
is the least negative reward that guarantees safety (Ry;;n — €), we may assign weights to it
corresponding to different levels of unsafety. Here, smaller weights would lead to policies that
pass near unsafe states, and large weights would lead to the safest policy that chooses the longer
path to the goal.

World value functions

We introduced a new form of goal-oriented value function that encodes knowledge about how
to solve all possible goal-reaching tasks in the world. This value function can be learned in a
sample efficient manner, and can subsequently be used to infer the dynamics of the environment
for model-based planning, or solve new tasks zero-shot given just their terminal rewards. An
obvious path for future work is to extend these results to the stochastic high-dimensional setting.
While we have demonstrated that WVFs can be learned with neural networks, planning in
high-dimensional environments is still an open challenge; WVFs may provide a promising
avenue for unifying both learning and planning in this space. Overall, our work is a step towards
more general agents capable of solving any new task they may encounter.

Logical composition of skills

In this chapter, we only considered the logical composition of WVFs for goal-reaching tasks.
Given how we defined these tasks as MDPs in the same deterministic environment sharing the
same non-terminal rewards, a clear direction for future works is extending these to wider families
of tasks. For example, tasks in stochastic environments, or partially observable environments,
or even more general non-goal-reaching tasks like the ones considered in Chapter 3. Finally, a
particularly interesting extension could be to temporal logic tasks like LTL and Turing machines,
where the agent learns a more complex formal language representation of long-horizon tasks.

Generalisation in lifelong RL

In this chapter, we developed a framework with theoretical guarantees for an agent to quickly
generalise over a task space by autonomously determining whether a new task can be solved
zero-shot using existing skills, or whether a task-specific skill should be learned few-shot.
However, one limitation of this work and previous works is the finite goal space. This is not a
strong practical limitation since one can think of G as the set of latent goal states in a partially
observable setting. For example, when the goal states are defined as continuous regions of the
state space, the goal observations may not be goal states; however, the latent goal states are
usually still finite. In this case one may need only learn a map from the goal observations to
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the latent goal states (for example with a supervised learning or clustering approach). This is a
promising experimental extension for future work.

Just like previous works, we also inherit some of the problems in regular RL. SOPGOL relies on
an RL method that is able to learn goal-reaching tasks (e.g DQN). If the RL method is unable to
reach goals in the environment of interest, then it is unable to learn the tasks and SOPGOL will
be unable to learn the task vectors. An interesting direction for future work will be to combine
SOPGOL with methods that attempt to address the delayed reward problem (e.g with reward
shaping or subgoal temporal compositions depending on the setting).

Natural language instruction following

In this chapter, we investigated a sampling based approach and an end-to-end approach for learn-
ing to translate from natural language instructions to the correct Boolean expressions that solve
given tasks. While these showed promissing results, one drawback is that they are both limited
and functions in smaller domains compared to the previously stated works [Ahn et al. 2023;
Driess et al. 2023]. We also do not use the full repertoire of Boolean compositions available in
Chapter 6. Future work could investigate utilising more complex Boolean expressions and tasks.
By creating more complex expressions, the number of tasks can be scaled to evaluate the ability
of the agent to learn and generalise to many more tasks. Our model is also limited to expressions
of two variables, and future work can investigate composing an unlimited number variables with
more complex expressions. Language also has properties besides attribute composition that are
not investigated in the RL literature or our work, such as recursion and temporal operators.

Temporal logic composition

In this chapter, we showed how agents equipped with the right type of knowledge representation
(skill primitives) are able to leverage the temporal logic structure in formal languages (via reward
machines) to achieve great sample efficiency and generalisation to arbitrary new tasks. However,
to achieve zero-shot composition, we assumed that every proposition is reachable from every
state. Additionally, to ensure that the optimal policy of tasks is also the policy that maximises the
probability of satisfying the LTL specification, we also assumed that the environment dynamics
are deterministic. A clear avenue for future works is to relax these assumptions.

Finally, we also focused on tasks specified using regular languages, which is the weakest formal
language in Chomsky’s hierarchy (but stronger than propositional logics). While these are
popular in prior works, a natural avenue for future works is to extend our results to more
powerful formal languages. Eventually, we want to build our way up to Turing machines, such
that any task that is specifiable in any language is also immediately solvable.

11.2 Concluding remarks

Moving forward, our work paves the way for the development of artificial agents that can
seamlessly integrate into our daily lives, assisting us in a wide range of tasks with reliability
and efficiency. By embracing the principles of compositionality and continually refining our
methods, we can achieve ever greater levels of intelligence and autonomy in artificial systems,
bringing us closer to realising the vision of general purpose artificial intelligence.
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Appendix A

Natural language instruction following

A.1 Appendix A

Task primitive ~ Success rate

pickup_ball  0.997 + 0.004
pickup_box  0.996 + 0.006
pickup_key 1.000 4 0.000
pickup_red  0.996 + 0.005
pickup_blue  0.999 =+ 0.003
pickup_green  1.000 % 0.000
pickup_grey  0.996 £ 0.005
pickup_purple 0.996 + 0.005
pickup_yellow 0.995 £ 0.008

Table A.1: The mean success rate of the individual pretrained world value functions for each
task primitive over 100 episodes. The standard deviations are over 10 runs.

A.2 Learning the world value functions with DQN

The DQNs used to learn the world value functions have the following architecture, with the
CNN part being identical to that used by Mnih et al. [2015]:

1. Three convolutional layers:
(a) Layer 1 has 3 input channels, 32 output channels, a kernel size of 8 and a stride of 4.

(b) Layer 2 has 32 input channels, 64 output channels, a kernel size of 4 and a stride of
2.

(c) Layer 3 has 64 input channels, 64 output channels, a kernel size of 3 and a stride of
1.

2. Two fully-connected linear layers:
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(a) Layer 1 has input size 3136 and output size 512 and uses a ReLU activation function.
(b) Layer 2 has input size 512 and output size 7 with no activation function.

We used the ADAM optimiser with batch size 256 and a learning rate of 1073, The target

Q-network was updated every 1000 steps, and we used e-greedy exploration, annealing € from
1.0 to 0.1 over 1000000 timesteps.
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Appendix B

Skill machines: Temporal logic composition

B.1 Details of Experimental Settings

In this section we elaborate further on the hyper-parameters for the various experiments in
Section 9.2. We also describe the pretraining of WVFs for all of the experimental settings which
corresponds to learning the task primitives for each domain. The same hyper-parameters are
used for all algorithms in a particular experiment. This is to ensure that we evaluate the relative
performance fairly and consistently. The full list of hyper-parameters for the Office World,
Moving Targets and Safe Al Gym domain experiments are shown in Tables B.1-B.3 respectively.

Hyper-parameter ‘ Value ‘
Timesteps le®
Training exploration (€) 0.5
Per-episode evaluation exploration (¢) | 0.1
Discount Factor () 0.9

Table B.1: Table of hyper-parameters used for Q-learning in the Office World experiments.

Hyper-parameter ‘ Value
Timesteps 1eb
Neural Network architecture CNN + MLP
CNN architecture Defaults of Mnih et al. [2015]
MLP hidden layers 1024 x 1024 x 1024
Start exploration (e) 1
End exploration (¢) 0.1
Exploration decay duration (e) 5e°
Discount Factor (v) 0.99
Others Defaults of Mnih et al. [2015]

Table B.2: Table of hyper-parameters used for Deep Q-learning in the Moving Targets experi-
ments.
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Hyper-parameter Value

Timesteps 1e®
Neural Network architecture MLP
MLP hidden layers 2024 x 2024 x 2024

Max episodes length 100
Target noise 0.2

Action noise 0.2
Discount Factor (v) 0.99

Others Defaults of Achiam [2018]

Table B.3: Table of hyper-parameters used for the TD3 in the Safe Al Gym experiments.

To use skill machines we require pre-trained WVFs. As mentioned above, all WVFs are trained
using the same hyper-parameters as any other training. Additionally, for all experiments the
WVFs are pre-trained on the base task primitives for the domain. For example, in the Office World
domain, the WVFs are trained on the [P U C| base task primitives corresponding to achieving
each predicate, P = {A, B, C’/lD7 %, wp b # DT #1) (reaching states the predicate is set to
True), with constraints C = {*}. All other primitives in this domain can be obtained zero-shot
through value function composition. Similarly, for the moving targets domain (Figure 9.7),
the WVFs are pre-trained on the primitives corresponding to obtaining objects by shape or
colour in the environment separately, P = {{J, ll, ll, =, O}, with constraints C = P. From here
the value functions for finding objects of particular colours or any more complex primitives
can be composed zero-shot. Finally, for the SafeAl Gym environment the base skill primitives
correspond to going to a cylinder (i), a button (), and a blue region (Q): P = {i,®, D},
trained with constraints C = {Q}.
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