A Boolean Task Algebra For Reinforcement Learning Geraud Nangue Tasse*, Steven James and Benjamin Rosman

Δx University of the Witwatersrand, Johannesburg, South Africa

We formalise the logical composition of tasks as a Boolean Algebra and provide a method for producing the optimal value functions of the composed tasks with no further learning.

Introduction
- We want to combine policies learned in
previous tasks to create new policies.
- Build rich behaviours from simple ones,
resulting in combinatorial explosion in abilities.
- But unclear how to produce new optimal
policies from known ones.
Prior work [1,2] shows that value functions can be
composed to optimally solve union of tasks and
approximately solve the intersection of tasks.
We complement these results by proving optimal
composition for the intersection and negation
of tasks in the total-reward, absorbing-state
setting, with deterministic dynamics.

Goal Oriented RL

We define an extended value function (EVF) that decouples the values for each absorbing state:

$$
\begin{gathered}
Q(s, g, a)=\bar{r}(s, g, a)+\int_{S} V^{\pi_{g}}\left(s^{\prime}\right) \rho_{(s, a)}\left(d s^{\prime}\right) \\
\bar{r}(s, g, a)= \begin{cases}N & \text { if } g \neq s \in G \\
r(s, a) & \text { otherwise }\end{cases}
\end{gathered}
$$

Similar to UVFAs [3] but uses extended rewards.
[1] B. Van Niekerk, S. James, A. Earle and B. Rosman. Composing Value I1. B. Van Niekerk, S. James, A. Earle and B. Rosman.
Functions in Reinforcement Learning. In ICML 2019. [2] T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine.
Composable Deep Reinforcement Learning for Robotic Manioulation Composable Deep Reinforcement Learning for Robotic Manipulation.
[3] T. Schaul, D. Horgan, K. Gregor and D. Silver. UVFAs. ICML 2015.

Compositionality

Theorem 1: Let \mathbf{M} be the set of tasks. Then \mathbf{M} forms a Boolean algebra when equipped with the or, and, and not operators given by:
where, $r_{\text {MAX }}$ and $r_{\text {MIN }}$ are the reward functions for the maximum and minimum tasks.
Theorem 2: Let \mathbf{Q} be the set of extended value functions. Then \mathbf{Q} forms a Boolean algebra when equipped with the or, and, and not operators given by:

$$
\begin{aligned}
& Q^{*}(\boldsymbol{\square}) \text { and } Q *(\boldsymbol{\#})=\min \{Q *(\boldsymbol{\#}), Q *(\boldsymbol{\#})\} \\
& \operatorname{not} Q *(\boldsymbol{\#})=\left(Q *_{\text {MAX }}+Q *_{\text {MIN }}\right)-Q *(\boldsymbol{\#})
\end{aligned}
$$

$$
\text { where, } Q^{*} \text { MAX and } Q^{*} \text { MIN are the extended value functions for the maximum and minimum tasks. }
$$

Theorem 3: The task and extended value function spaces are homomorphic
Base Tasks and Explosion of Skills

Experiment (Q-Learning): Four Rooms

Experiment (DQN): Function Approximation

