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A general value function with mastery of the world (provably)
that encodes the solution to the current task and
has downstream zero-shot abilities.

Introduction World Value Functions Zero-shot Values and Policies from Rewards
» How do we learn and represent knowledge that is . We first define the agent’s internal goals G as all ~ Learned WVF for the task § * We can obtain the WVF Qy for any task given its goal rewards R; and an arbitrary WVF Q"
sufficient for a general agent that needs to solve states with terminal transitions. “top-left or bottom-left™

Qu(s,g,a) = Q°(s,g,a) + [max R¢(g,a) — max Q" (9,9 a)]

multiple tasks in a given world?  The WVF Q(s, g, a) for a task in a given world Is
defined by the agent’s pseudo-reward function:
(Ryin if g# sands'isterminal,
 R(s,a,s’) otherwise
where Ryy IS a large penalty the agent gives
itself for achieving the wrong internal goals.
* This leads to mastery (provably): The agent learns

how to achieve all internal goals.
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* General value functions
(GVFs) [1] are a general
approach that tries to
answer this question.
Consider for example a
4-rooms gridworld. A
GVF here can be defined

by defining a set of goals
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* The reqgular task rewards, value function, and
policy can always be recovered (provably): Close-up of WVE

reward function N , B Q*(# )
R(S, g, Cl, S’) = 1 If S::g else O. The GVF IS glven by, R(S, a,S ) o mgXR(S’ g’ a’S )’ Q(S’ a) o mgx Q(S’ g’ a) ﬁu v [ Boolean task algebra
_ 00 ' n(s)~argmax, max Q(s, g, a) 553 g " T e
g TNIE §1012
Q(S; g; (l) — IIE‘:S R(S, g) a, Sl) T zth(St) g; at: St+1) E ig " 22K
_ t=1 _ « Finally, WVFs encode the dynamics of the world. s :
 GVFs can also be learned efficiently in non-tabular When G = S, p(.|s, a) can be estimated by solving E £ | HK
settings using universal value function approximators the system of Bellman equations: 2 e N K
(UVFAS) [2] ) B , P , V* E : ? 10 5 N4 b Hﬁ d 8k 10
Q'(s,9,a) = Lsesp(s'ls, A)R(s, 9,a,5") + V' (s, g)] . Maximise over goals I e
» However, what is the origin of goals and how to Vg € G. This can then be used for model-based RL
define goal-specific rewards in general? WVFs are & o 2 and > or
a subset of GVFs that answer these questions— . . . " - -
. . . . Inferred Transitions Imagined Rollouts Inferred Values and Polic *(a= * infO*(#). O*
goals are simply states with terminal transitions, ) - = max{Q \(‘%)’Q ()3 min{Q" (%), @"([)}
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while goal rewards are simply task rewards with a
penalty term added for achieving wrong goals.
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