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A general value function with mastery of the world (provably)
that encodes the solution to the current task and
has downstream zero-shot abilities.

Introduction World Value Functions Zero-shot Values and Policies from Rewards
+ How do we learn and represent knowledge that is . We first define the agent’s internal goals G asall ~ Learned WVF for the task § * We can obtain the WVF Qy for any task given its goal rewards R; and an arbitrary WVF Q"
sufficient for a general agent that needs to solve states with terminal transitions. “top-left or bottom-left™

Qu(s,g,a) = Q°(s,g,a) + [max R¢(g,a) — max Q" (9,9 a)]

multiple tasks and plan in a given world?  The WVF Q(s, g, a) for atask in a given world is

= W R

_ defined by the agent’s pseudo-reward function: NaVIgate to a hallway Navigate to the bottom
* General value functions | W W W . o (Ryin if g # s and s'is terminal, Wm_““_!_! _
(GVFs) [1] are a general (s,9,a,5) = | R(s,a,s") otherwise ; -
approach that tries to where Ry is a large penalty the agent gives —ici
answer this question. itself for achieving the wrong internal goals. FararalllEacis

Consider for example a
4-rooms gridworld. A

GVF here can be defined |
by defining a set of goals |
G == S and a goal-specific [ttt L CEEED
reward function
R(s,g,a,s') =1 if s==g else 0. The GVF is given by,

* This leads to mastery (provably): The agent learns
how to achieve all internal goals.

Fast RL with Zero-shot Dynamics

* The regular task rewards, value function, and
policy can always be recovered (provably):

Algorithm 2: Dyna for WVFs using inferred transi-
tion functions
Initialise: WVF (), Reward function R, goal buffer
G, learning rate o
foreach episode do
Observe initial state s € S and sample g € G
while episode is not done do

R(S, a, S’) — maxR(S’g’ Cl,S’), Q(S, a) = max Q(S,g, a) Inferred Transitions Imagined Rollouts
g g

n(s)~argmax, max Q(s,g,a)
g

Q(S; g’ (l) — IIE‘:S R(S' g' a, Sl) T zth(St' g’ A, St+1)

* Finally, WVFs encode the dynamics of the world.

- .. i - arg ax Q(s.q.a p.1—c
 GVFs can also be learned efficiently in non-tabular When G = S, p(.|s, @) can be estimated by solving o {11(161%13(2(%;9,61) W.p
. . . . . . ] a random action W.p. €
?Sitllggs)u[zl]ng universal value function approximators the system of Bellman equations: Execute a. observe reward  and next state
S , . « R(s,a,.) <
Q (S: 9, Cl) — ZS’ES P(S’ |S: Cl) [R(S, g, a, S,) +V (S' g)] if s" is absorbing then G < G U {s}
: .o - for ¢’ € G do
« However, what is the origin of goals and how to Vg € G. This can then be used for model-based RL P Ry if g’ # s and s € G else r
define goal-specific rewards in general? WVFs are 0 |F+maxQ(s", ¢ a’)] Q(s.g'.a)
a subset of GVFs that answer these questions— . Qs, g’ a) « Q(s,¢',a) + ad 10
goals are simply states with terminal transitions, 10 _ , D s st
: - : —— Value function (Q-learning) s < random previous state .
while goal rewards are simply task rewards with a WVF (Q-learning) a g?dom l)ﬁrewous action taken in s 3
. . < nhil(s,a,.
penalty term added for achieving wrong goals. > ) N ' + Solving N( ) Bellman equations g
< MSE = 157537 2 gen(s) (Qs, 9,0)— S 0 /_/
B ° [R(g ;0 5) + V( )D &) Value function (Q-learning)
if MISE < r/f.'reshold then . —— -
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Episodes le3
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