Logical Composition in Lifelong Reinforcement Learning Geraud Nangue Tasse*, Steven James and Benjamin Rosman

University of the Witwatersrand, Johannesburg, South Africa

We propose a framework for lifelong learning that leverages zero-shot composition to solve new tasks that are expressible as logical combinations of learned ones.

Goal Oriented RL

We define an extended value function (EVF) that decouple absorbing state:

$$Q(s,g,a) = \overline{r}(s,g,a) + \int_{S} V^{\pi_{g}}(s')\rho_{(s,a)}(a)$$

$$\overline{r}(s,g,a) = \begin{cases} N & \text{if } g \neq s \in G \\ r(s,a) & \text{otherwise} \end{cases}$$

Similar to UVFAs [3] but uses **extended rewards**.

Compositionality

Theorem 1: Let **M** be the set of tasks. Then **M** forms a Bo equipped with the **or**, **and**, and **not** operators given by:

= or = (S, A, p, r(= or =)), where r(= or =) = n $\blacksquare and \blacksquare = (S, A, p, r(\blacksquare and \blacksquare)), where r(\blacksquare and \blacksquare)$ $not \blacksquare = (S, A, p, r(not \blacksquare)), where r(not \blacksquare) = (r_{MAX})$

where, r_{MAX} and r_{MIN} are the reward functions for the maximum and minimum tasks.

Theorem 2: Let **Q** be the set of extended value functions Boolean algebra when equipped with the **or**, **and**, and **not**

$$Q^*(\blacksquare) \text{ or } Q^*(\blacksquare) = \max\{Q^*(\blacksquare), Q^*(\blacksquare)\}$$

$$Q^*(\blacksquare) \text{ and } Q^*(\blacksquare) = \min\{Q^*(\blacksquare), Q^*(\blacksquare)\}$$

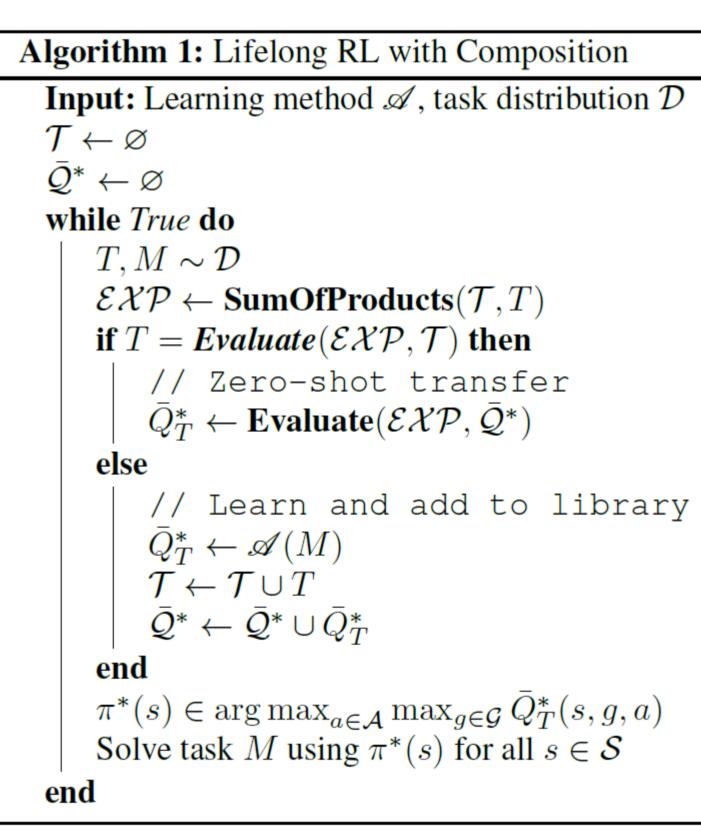
$$not Q*(\blacksquare) = (Q*_{MAX} + Q*_{MIN}) - Q*(\blacksquare)$$

where, $Q*_{MAX}$ and $Q*_{MIN}$ are the extended value functions for the maximum and minimum

Theorem 3: The task and extended value function spaces

es the values for each	
ls')	
oolean algebra when	
$\max\{r(\blacksquare), r(\blacksquare)\}$ = min{r(\blacksquare), r(\blacksquare)} x + r_{MIN}) - r(\blacksquare)	
s. Then Q forms a t operators given by:	
m tasks .	
are homomorphic.	

Lifelong RL With Composition



Goals	M_0	M_1	M
g_0	0	0	0
g_1	0	1	1
g_2	1	0	1
g_3	1	1	0

Goals

<u>Sum O</u>
$M' \coloneqq (\neg M_0)$
M = M'? Y
$Q^* = (\neg Q_0^* \land$

<u>Sum C</u>
$M' \coloneqq (\neg M_0)$
M = M' ?
Leam and a

<u> Of Products</u>

 $(0 \wedge M_1) \vee (M_0 \wedge \neg M_1)$ Yes!

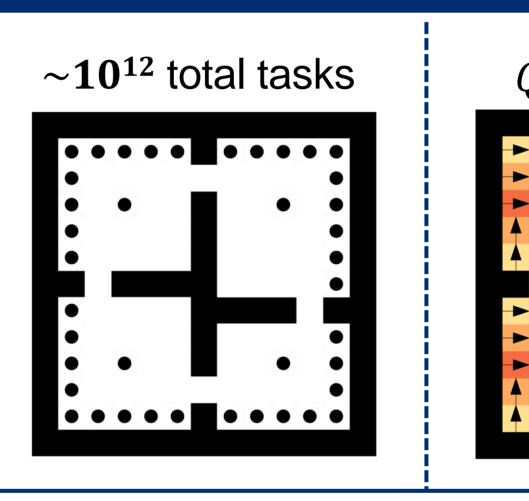
 $\land Q_1^*) \lor (Q_0^* \land \neg Q_1^*)$

<u>Of Products</u>

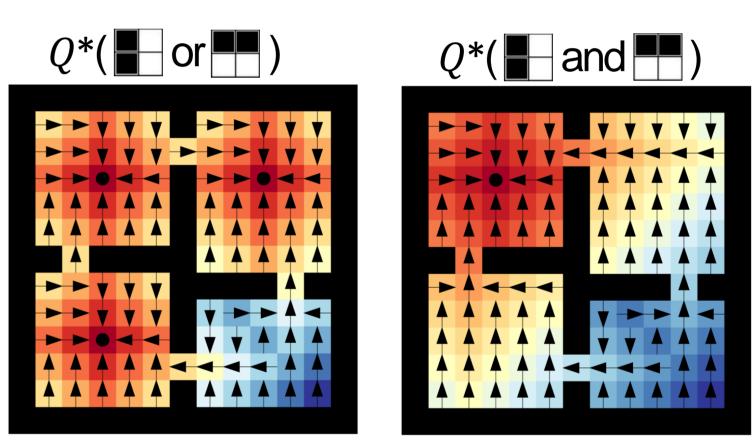
 $(M_0 \wedge M_1) \vee (M_0 \wedge \neg M_1)$

No!

add to library



Experiment: Zero-shot Composition



Experiment: Lifelong RL With Composition

