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We leverage logical composition in lifelong RL to
achieve both zero-shot and few-shot transfer leading to
fast generalisation over unknown task distributions.

Introduction SOPGOL Experiment: Transfer after pretraining

. Gi — = Gals 1 @ 8 1 @ B It © = &1 0 8 &t O =
Given a new .task, can we determine |f) It IS s T ® 2 1 0 B 0= 10 B © O = oals
expressﬂale In terms of learned ones? If yes, can 0 0 0 0 0 o 1 1 1 9 0 o o olar !l = T, 0 0 1 0 I I 1 0 1 1 0 0 1 0 0
we solve It zero-shot? If no, can we solve it few- B o0 0 0 1 1 1 0 0 0 0 0 o o olo O
shot? How about generalisation over any o 0 0 0 0 0 00 0 0o o0 o0 1 1 1 [ r% Pretrained on base tasks: Pretrained on non-base tasks:
_stati istribution? ¢ 1 0 O 1 0O O 1 0 0 1 0 0 1 0 |0 - - |
un.known non statlon.ary task distribution” | = M. M. M.. M, ] Q
* Prior works [1,2] achieve a subset of these by r oo oo 6090 090906 00 0]t 2 , >
assuming base skills are learned. Most lifelong | o 0 —
: For each episode: B e B —
RL works [3] focus on learning new tasks faster 0 -2 n -2
but do not consider the generalisation problem » Sum of products: Tsgp == -l A A A—E and Qspp = =Q" (M) A=Q" (M) AQ*(" ) A=Q7(}) 2 - 2 -
(they have to learn all or most new tasks). » T = Tgop? (NO!) = s L ——— * -e B
> If yes, use m ~ Q¢pp and don’t add anything to library. ~8 Bt s 8 T
1 _ | " » If no, learn a new Q with goal-oriented learning, using T ~Q V Q¢op t0 Speed up training. 0.0 0.5 E'poisodeé's 2.0 |25 00 02 o4 of o8 10 12 14 g
ogical composition After n episodes (or when Q@ is sufficiently good), add (T, Q) to the library if T + T'. v e 0 O
S <) -

To achieve zero-shot composition, the agent
learns an extended value function (EVF) for
each task M with reward function ry,(s, a):
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