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We provide a method for adaptively focusing on 

promising regions of the parameter and 

hyperparameter spaces using the same resources as 

random search thereby dramatically speeding up 

training of neural networks.
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• We want to find the best neural 

network for a given domain as fast 

as possible.

• Automatic hyperparameter 

optimisation and

parallel/distributed computing are 

areas of critical importance towards 

addressing this.

Prior works that attempt to acheive

these (partially) are HyperOpt-TPE

(uses Bayesian Optimization) [1], 

Spearmint (uses Bayesian Optimization 

with GP), SMAC (uses Bayesian 

Optimization with custom modelling 

function), and Hyperband (uses a 

Random Search Bandit-Based 

Approach)[2].

HyperSearch works by training 

multiple neural networks with different 

hyperparameters in parallel while 

optimizing both parameters and 

hyperparameters.

[3] proposes a method similar to ours, 

but differs in that optimize for a diverse 

population of best networks. While we 

use all the resourses to find a single 

best network (or networks in the 

neighbourhood of that).
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Hypersearch – Random Sampling and Gaussian Proccess

• N = Number of concurrent networks

• E = Number of epochs

• S = Number of sessions

• O(N*E) time complexity

• Explores N∗S hyperparameter configurations

• For each session, bad networks inherit best networks parameters 

Assumptions

• The hyperparameter space is a metric space

• Similar hyperparameters give similar performance

• t counts the number of steps taken of Adam 

• β1 and β2 are hyperparameters that control the weighted averages

• ϵ is a very small number to avoid dividing by zero

Adam optimizer: B


