
A Task Algebra For Agents In Reinforcement

Learning

Geraud Nangue Tasse

2291200

Supervisors:

Benjamin Rosman

Steven James

A thesis submitted to the Faculty of Science, University of

Witwatersrand, in fulfilment of the requirements for the degree of

Master of Science.

January 2020

Abstract

A necessary property for generally intelligent or lifelong-learning agents is the ability
to reuse the knowledge learned from old tasks to solve new tasks. This knowledge reuse
can come in the form of zero-shot learning—where it is sufficient to immediately solve new
tasks—or few-shot learning—where some additional learning needs to be done to solve
new tasks. Of particular interest is the class of tasks that can solved via zero-learning
since it leads to a direct way of generalising over a problem space. One such class of tasks
seems to be tasks specified by the arbitrary logical composition of already solved tasks.
That is tasks specified by arbitrary disjunction (union), conjunction (intersection), and
complement (negation) of learned tasks. The potential for zero-shot learning here stems
from the intuitive understanding that humans seem to have of the union, intersection,
and negation of tasks that they know. This zero-shot learning problem is yet to be solved
despite the general success of reinforcement learning in the past decade and the current
success of transfer learning methods that involve policies or value functions composition.
One possible cause of this is that there is no unifying formalism for the disjunction,
conjunction, and negation of tasks.

This work addresses the problem first by formally defining the composition of tasks
as operators acting on a set of tasks in an algebraic structure. This provides a structured
way of doing task compositions and a theoretically rigorous way of studying them. We
propose a framework for defining lattice algebras and Boolean algebras in particular over
the space of tasks. This allows us to formulate new tasks in terms of the negation,
disjunction, and conjunction of a set of base tasks. We then show that by learning a new
type of goal-oriented value functions and restricting the rewards of the tasks, an agent
can solve composite tasks with no further learning.

We verify our approach in two domains—including a high-dimensional video game
environment requiring function approximation—where an agent first learns a set of base
skills, and then composes them to solve a super-exponential number of new tasks.

Acknowledgements

I would like to thank my supervisor Benjamin Rosman and co-supervisor Steven James
for their amazing support and advices throughout this project. I extend my gratitude
to all those who directly or indirectly supported and helped me during this journey.
Above all I am deeply grateful to my family and friends for their emotional support and
encouragements.

Declaration

I, Geraud Nangue Tasse, declare that this thesis is my own, unaided work. It is being
submitted for the Degree of Masters of Science at the University of the Witwatersrand,
Johannesburg. It has not been submitted before for any degree or examination at any
other University.

(Signature of candidate)

day of 20 in03 August 20 Pretoria

to my family

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Research Problem . 3
1.3 Main Contributions . 4
1.4 Thesis Structure . 4

2 Preliminaries 6
2.1 Introduction . 6
2.2 Reinforcement Learning . 6

2.2.1 Markov Decision Processes . 7
2.2.2 Policies and value functions . 8

2.3 Lattice Theory . 9
2.3.1 Partial-order . 9
2.3.2 Semi-Lattice Algebra . 10
2.3.3 Lattice Algebra . 12
2.3.4 De Morgan Algebra . 13
2.3.5 Boolean Algebra . 14

2.4 Conclusion . 15

3 Composing Tasks 16
3.1 Introduction . 16
3.2 Related Work . 17
3.3 Tasks . 17
3.4 Algebra of Tasks . 18

3.4.1 Task Lattice . 18
3.4.2 De Morgan Task Algebra . 19
3.4.3 Boolean Task Algebra . 21

3.5 Between Task and Power Set Boolean Algebras 23
3.6 Problem with Standard Value Functions for Zero-Shot Composition 26
3.7 Conclusion . 27

4 Extended Value Functions 28
4.1 Introduction . 28
4.2 Theory for Extended Value Functions . 29

4.2.1 Related Work . 31
4.2.2 EVFs for Deterministic Shortest Path Tasks 31
4.2.3 EVFs for Discounted Goal Reaching Tasks 33

4.3 Learning EVFs . 34
4.3.1 Tabular Case . 35

i

ii Contents

4.3.2 Function Approximation Case . 36
4.4 Experiments . 37

4.4.1 Tabular Case . 37
4.4.2 Function Approximation Case . 38

4.5 Conclusion . 39

5 Composing Extended Value Functions 41
5.1 Introduction . 41
5.2 Algebra of EVFs . 42

5.2.1 EVF Lattice . 42
5.2.2 De Morgan EVF Algebra . 45
5.2.3 Boolean EVF Algebra . 47

5.3 Between EVF and Power Set Boolean Algebras 51
5.4 Zero-Shot Composition With Function Approximation 55

5.4.1 Deterministic Shortest Path Tasks 55
5.4.2 Discounted goal-reaching tasks . 57

5.5 Investigating Practical Considerations . 59
5.5.1 Four Rooms Experiments . 59
5.5.2 Function Approximation Experiments 60

5.6 Conclusion . 61

6 Future Work and Conclusion 64
6.1 Future Work . 64
6.2 Conclusion . 65

Chapter 1

Introduction

1.1 Overview

Reinforcement learning (RL) has achieved recent success in a number of difficult, high-
dimensional environments (Mnih et al., 2015; Levine et al., 2016; Lillicrap et al., 2016;
Silver et al., 2017). However, these methods generally require millions of samples from
the environment to learn optimal behaviours, limiting their real-world applicability. A
major challenge is thus in designing sample-efficient agents that can transfer their existing
knowledge to solve new tasks quickly. This is particularly important for agents in a
multitask or lifelong setting, since learning to solve complex tasks from scratch is typically
infeasible.

Lifelong learning poses the problem of learning in the context in which an agent is
presented with a number of tasks during it’s lifetime, and needs to be able to transfer
knowledge learned from previous tasks to solve new tasks (Abel et al., 2018; Thrun,
1996). It is motivated by how humans are seemingly able to generalize over large space
of problems from solving a small subset of it. Building lifelong learning agents is one of
the ultimate goals in reinforcement learning, as having such agents will make them more
practical in many real life problems. One approach towards achieving it is composition
(Todorov, 2009), which allows an agent to leverage existing skills to build complex, novel
behaviours. These newly-formed skills can then be used to immediately solve new tasks
(zero-shot composition) or speed up the learning of new tasks (few-shot composition).
Zero-shot composition is of particular interest to the lifelong learning problem, as it gives
a direct way for agents to quickly generalize over a task space.

A desirable trait of agents is the ability to do zero-shot composition on any class of
tasks for which past knowledge is sufficient to solve knew tasks. A candidate for such
tasks are the logical combinations of previously solved tasks. That is, new tasks formed
by using the logic operators OR, AND, and NOT on past tasks. This type of task is
of great interest to the lifelong learning problem since humans are able to solve them
seemingly with great ease.

Consider for example a domain with tasks corresponding to collecting various objects
of possibly different shapes and colors (Figure 1.1). A human that has learned how to
collect any squares optimally—Square task—and separately learned how to collect any
blue object optimally—Blue task—can immediately solve any of the following tasks,

� Square OR Blue: Collect squares or blue objects optimally.

� Square AND Blue: Collect squares that are blue optimally.

1

2 Chapter 1. Introduction

� NOT Square: Collect objects that are not squares optimally.

� NOT Blue: Collect objects that are not blue optimally.

� Square AND (NOT Blue): Collect squares that are not blue optimally.

� Blue AND (NOT Crate): Collect blue objects that are not squares optimally.

� (Square OR Blue) AND NOT(Square AND Blue): Collect squares or blue
objects that are not blue squares optimally.

Figure 1.1: Video game domain with different composable tasks (Van Niekerk et al., 2019)

This seems to be because as humans we are able to do the disjunction (union), con-
junction (intersection), and negation (opposite) of tasks we know (given some assumptions
about said tasks). Our ability to immediately solve logical combinations of known tasks
also suggests that our knowledge representation for learned tasks is sufficiently general.
That is, it is not limited to the specific objectives of the task. This makes sense since dur-
ing our experience learning tasks we do not learn only about the best outcomes, but also
about the less valuable or even bad ones (White, 1959). This generality in knowledge and
compositional ability gives us a very simple degree of compositional explosion of skills.
It is hence much desired for lifelong agents to have the same ability. As an agent learns
new tasks it should gain sufficient knowledge from them to understand how they can be
combined together to solve new ones. That way whenever it is desired for the agent to
solve a logical combination of previous tasks, it can simply proceed. This is essential for
using agents practically since for each new desired task like collect squares but not blue
ones, one would not want to wait for the agent to learn how to do it when it is seemingly
trivial to us.

In this work we are hence interested in the logical combination of tasks and skills. Since
logics are abstracted in lattice theory (Birkhoff, 1940), we use the algebraic structures
therein to formalise the logical composition of tasks and skills in reinforcement learning.
We first define a lattice algebra over the set of tasks. This formalises and unifies the
disjunctive and conjunctive compositions considered by previous works (Todorov, 2009;
Saxe et al., 2017; Haarnoja et al., 2018; Van Niekerk et al., 2019; Hunt et al., 2019; Peng
et al., 2019). We then give a formal meaning to the negation of tasks, which is used
to define a De Morgan algebra over the task space. This extends previous composition
problems to encompass all logic operators: conjunction, disjunction, and negation. We
show that for tasks with sparse rewards, the De Morgan algebra extends to a Boolean
algebra. This gives us the notion of base tasks.

1.2. Research Problem 3

We introduce a new type of value function called extended value function which encodes
how to achieve various outcomes for a single task. The same algebraic structures defined
for the task space are also defined for a value function space. We then use the rich
knowledge encoded by the extended value functions to prove zero-shot composition. This
is done by showing that there exists a homomorphism between the task and value function
algebras. Given any new task specified as the composition of learned tasks, we can
immediately obtain the value function that solves it. Furthermore, given a set of base
tasks that have been previously solved by the agent, any new task written as a Boolean
expression can immediately be solved without further learning, resulting in a zero-shot
super-exponential explosion in the agent’s abilities.

We illustrate our approach in simple gridworld domains, where an agent first learns
to go to particular regions of the xy-plane, after which it can then optimally solve any
task specified as their logical combination. We then demonstrate composition in high-
dimensional video game environments, where an agent first learns to collect different
objects, and then compose these abilities to solve complex tasks immediately. Our results
show that, even when function approximation is required, an agent can leverage its existing
skills to solve new tasks without further learning.

1.2 Research Problem

In Section 1.1 we discussed lifelong learning agents, and how humans have various transfer
learning abilities which are much desired for these agents. We discussed one such ability,
which is how humans are able to immediately solve new tasks posed to them as logical
combinations of previously solved tasks. This is one way in which humans are able to
generalise over the space of problems. Hence it is necessary for agents to have this ability
for the ultimate goal of lifelong learning agents. This is a problem of great significance
that has yet to be solved.

In this work we break down the problem into three parts. First is how can we for-
malise what is meant by the logical combination of tasks in the context of reinforcement
learning. Consider for example the video game domain shown in Figure 1.1. If Square
and Blue are tasks with formal definitions, then the question is: What is the formal task
defined by logical statements like Square AND Blue or even (Square OR Blue) AND
NOT(Square AND Blue)? This is important because while we know intuitively what
such specifications mean, we do not have rigorous definitions for them. We hence cannot
begin to study how to optimally solve compositional tasks when their definition is still
lacking.

The second part of the problem is what type of knowledge do agents need to learn about
previous tasks to have any chance of solving new tasks optimally without learning. This is
an important problem as it is not necessarily true that the usual knowledge representation
in reinforcement learning is sufficient to solve compositional tasks. We can already see
how for the simple example of Square AND Blue task, an agent needs to know about
all the squares and circles in the environment, be able to analyze them to see which ones
satisfy both properties, and be able to compare those to see which one is the nearest (in
the case where there is more than one).

Finally we ask what method can be used to combine the knowledge learned from
previous tasks to solve new tasks optimally. This is the main problem we aim to address.

4 Chapter 1. Introduction

1.3 Main Contributions

We describe the main contributions of this work.

1. Task algebra (Chapter 3): We formalise the disjunction, conjunction, and negation
of tasks as operators acting on a set of tasks in lattice structures. This introduces
a notion of task space, and enables interpretable and easy task specifications. This
is important in complex lifelong settings where constructing rewards for new tasks
is hard. A main result obtained from this formalism is the notion of base tasks,
which are a minimal set of tasks that can be determined and which are sufficient to
specify any other task in a task space. This is essential in the lifelong setting where
the task space is simply too large to construct rewards for all desired tasks.

2. Extended value functions (Chapter 4): This is a new type of value function which
we introduce to later achieve zero-shot composition. This value function is a goal-
oriented value function that encodes how to achieve various goals in an environment.
It is important for transfer learning in general as it is learned from a single task but
encodes richer knowledge than standard value functions.

3. Zero-shot composition (Chapter 5): We prove that any task specified as the logical
composition of learned tasks can be solved immediately without further learning. We
demonstrate via a series of experiments that this holds true not only theoretically
but also practically, even when the assumptions made in the theory are broken.
This is an important result as it enables lifelong learning agents to solve a super-
exponentially increasing number of tasks as the number of base tasks they learn
increase.

1.4 Thesis Structure

Since we are interested in solving tasks in the context of reinforcement learning and
formalising their logical composition using lattice theory, we give a brief introduction to
these areas in Chapter 2. We define and describe the main concepts and structures that
will be used throughout the thesis. In particular Chapters 3 and 5 formalises the logical
composition of tasks and value functions respectively using the lattice structures. They
hence require familiarity with the definitions and main properties of these structures, all
of which is stated in Chapter 2.

Chapter 3 uses the structures described in Chapter 2 to formalise the disjunction,
conjunction, and negation of tasks. This gives us a notion of task space. The set of
tasks we consider are a restricted class of Markov decision processes that model goal
reaching tasks. Hence the logical operators we define act on Markov decision processes
such that composing them produces new Markov decision processes. With this task
algebra established, we leverage the mathematical richness that comes with it to show
that for tasks with sparse rewards, there is a relationship between the task space and the
power set of the goal space. This leads to the formal introduction of base tasks, which has
been so far mentioned informally in the literature. We finally show that standard value
functions are insufficient to solve logical task compositions without extra learning.

Chapter 4 develops a new goal-oriented value function that encodes more information
about solved tasks than standard value functions. It establishes the main theory for it by
following a similar structure to that of value functions given in Chapter 2. Main properties

1.4. Thesis Structure 5

of these value functions are also stated and proven here. Some of these properties are
heavily relied on in Chapter 5 to establish the relevant algebraic structures for value
functions and show zero-shot composition. In Chapter 4 we also propose an algorithm
for learning the new value function and conduct relevant experiments on it. Mainly, we
demonstrate that these value functions do indeed encode a variety of skills learned from
the same type of experience as standard value functions. In particular they encode how
to achieve various goals in the environment.

Chapter 5 formalises the disjunction, conjunction, and negation of value functions in
the algebraic structures of lattices, similarly to how the task algebra was established. This
gives us a notion of value function space. The intuition here is that to successfully achieve
zero-shot composition, we want the notion of logics in the space of knowledge learned
(value functions) to be similar to that in the space of tasks they were learned from. We in
fact prove zero-shot composition here by showing that the task space and value function
space are homomorphic. The zero-shot compositions are first demonstrated in gridworld
domains where value functions can be learned optimally. We then demonstrate that these
compositions still hold in high dimensional environments, where function approximation
is required. The high dimensional environment considered here is the video game domain
illustrated in Section 1.1, as we show how the logical compositions we desired from lifelong
agents are now achieved. Finally we investigate some practical considerations here. In
particular we investigate the effect of dropping the assumptions made for theoretical
guarantees. We demonstrate that zero-shot composition still holds thanks to the rich
knowledge represented by the introduced value functions.

Chapter 2

Preliminaries

2.1 Introduction

In this Chapter we describe the main concepts and algebraic structures that will be used
throughout this thesis. Section 2.2 gives a brief introduction to reinforcement learning,
describing how decision problems are modelled and some important concepts like policies
and value functions relevant for later chapters. In Section 2.3 we also briefly introduce
lattice theory and describe the main structures of interest.

2.2 Reinforcement Learning

In its simplest form, reinforcement learning is about agents learning to make decisions
so as to maximize some numerical quantity. Given a decision-problem, the learner deter-
mines the best decisions to make at each point in time by repeated trial and error. These
decision-problems are usually formulated as Markov decision processes (MDPs) (Puter-
man, 2014). The MDP encodes information about the possible states the environment
can be in, the possible decisions (actions) the agent can make, the behaviour (transition
dynamics) of the environment in response to the decisions the learner makes, and the
numerical quantity (rewards) that the learner receives for each decision it makes.

The reward signal encodes the objective of a reinforcement learning problem. An
agent’s objective is usually to take actions that maximize the total rewards it expects to
receive over the future. This is encapsulated by the reward hypothesis:

All of what we mean by goals and purposes can be well thought of as the maximization
of the expected value of the cumulative sum of a received scalar signal (called reward).
(Sutton et al., 1998)

This notion of an agent’s objective may at first appear limiting but has proven to
be sufficient for a wide range of problems. These range from agents learning how to
play games at an expert level (Mnih et al., 2013; Fu, 2016) to controlling simulated and
physical robots (Peng et al., 2018).

The function that determines what action the agent takes at a given state is called its
policy and the function that gives the total rewards it expects to receive over the future
following that policy is called the value function.

6

2.2. Reinforcement Learning 7

2.2.1 Markov Decision Processes

MDPs formalise the class of problems involving an agent interacting with an environment
to reach some goals (Figure 2.1) . A state s = St of the environment is said to be Markov
iff,

P[St+1 = s′|St = s,At = a] = P[St+1 = s′|S0 = s,A0 = a, ...,St = s,At = a].

A decision-making problem that satisfies the Markov property ∀s ∈ S is called a
Markov decision process (MDP). Formally, an MDP is defined as a tuple 〈S,A, p, r, γ〉
where,

� S is the state space,

� A is the action space,

� p is a Markov transition function,

p : S ×A× S → [0, 1]

(s, a, s′) 7→ P[St+1 = s′|St = s,At = a],

� r is the reward function, r : S ×A → R,

� and γ ∈ [0, 1] is the discount factor

Figure 2.1: Illustration of agent-environment interaction (Sutton et al., 1998)

An agent’s objective is usually to maximise the return Gt for these MDPs,

Gt := Rt+1 + γRt+2 + ... =
∞∑
k=0

γkRt+k+1. (2.1)

Note how Gt diverges if γ = 1 and the rewards are non-zero. Usually in this case the
state space is augmented with a special state, w, such that p(s, a, w) = 1 ∀(s, a) ∈ (G×A)
and the rewards are zero after reaching w. These are undiscounted MDPs where an agent
needs to reach some goal states in G ⊂ S.

MDPs with finite S and A are called finite MDPs, otherwise they are called infinite
MDPs. We consider finite MDPs throughout this work; however, all the results also hold
for infinite MDPs except where otherwise stated.

8 Chapter 2. Preliminaries

2.2.2 Policies and value functions

Formally, a Markov policy π is defined as the probability of selecting each action in a
given state. That is,

π : A× S → [0, 1]

(a, s) 7→ P[At = a|St = s].

The state-value function v under a policy π is defined as the expected return of starting
at a given state and following π thereafter. That is,

V π : S → R
s 7→ Eπ[Gt|St = s].

Similarly, the action-value function q under a policy π is defined as,

Qπ : S ×A → R
(s, a) 7→ E[Gt|St = s,At = a].

The action-value function is particularly useful in model-free reinforcement since it
enables agents to learn optimal actions for each state without the need for transition
dynamics.

Using the recursive property of Gt, the value functions can be shown to satisfy the
following Bellman equations (Bellman, 1954),

V π(s) =
∑
a∈A

π(a, s)

(
r(s, a) + γ

∑
s′∈S

p(s, a, s′)V π(s′)

)
, (2.2)

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s, a, s′)
∑
a∈A

π(a, s)Qπ(s′, a). (2.3)

By defining a partial ordering over policies, it can be shown that ∃π∗ ≥ π,∀π, which
leads to the optimal value functions,

V π∗(s) = V ∗(s) = max
π

V π(s) ∀π∗,

Qπ∗(s, a) = Q∗(s, a) = max
π

Qπ(s, a) ∀π∗.

These give rise to the following Bellman optimality equations for value functions,

V ∗(s) = max
a∈A

(
r(s, a) + γ

∑
s′∈S

p(s, a, s′)V ∗(s′)

)
, (2.4)

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

p(s, a, s′) max
a∈A

Q∗(s′, a). (2.5)

These are written more succinctly using the Bellman operators as follows,

[T π̄V] (s) = r(s, π(s)) + γ
∑
s′∈S

p(s, π(s), s′)V (s′), (2.6)

2.3. Lattice Theory 9

[T V] (s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s, a, s′)V (s′)

]
. (2.7)

An optimal policy π∗ can also be obtained by acting greedily on the optimal action-
value function Q∗. That is,

π∗(a, s) =

{
1 a = arg maxa∈AQ

∗(s, a),

0 otherwise.
(2.8)

2.3 Lattice Theory

Lattice theory is a generalization of the study of Boolean algebras (Grätzer, 2002).
Boolean algebra is today widely applied to various areas such as propositional logics,
set theory, logic gates in electronics and much more. In general it is the go-to frame-
work for formalising concepts that have a logical nature. Its formulation dates back to
Boole (1854) in his seminal work on the laws of thought, who developed the precursor to
current Boolean algebra while attempting to formalize propositional logics. The notion
of a lattice was later introduced in the field as a useful generalisation of the axioms of
Boolean algebra. Indeed lattice theory is now pervasive through the whole of modern
algebra (Birkhoff, 1940).

Lattice theory can be studied as part of order theory or abstract algebra. The basic
concepts in the order theoretic view are: Partial orders, least upper bounds and greatest
lower bounds. These are equivalent to its basic concepts in the algebraic view: Join
(abstracts disjunction) and meet (abstracts conjunction) semi-lattices. This simplicity
yet richness in applications is the main appeal of lattice theory. Since we are mainly
interested in the conjunction, disjunction, and negation operators, our main focus will be
on the algebraic formulation as we build our way up to a Boolean algebra. However we
will also use the order theoretic view whenever that seems most natural. We describe
here the main structures that are of interest to us.

2.3.1 Partial-order

Definition 2.3.1. A partially ordered set (poset) (L,≤) is a set L equipped with the
binary relation ≤ (less than or equal to) which satisfies the following properties for a, b, c
in L:

(i) Reflexivity: a ≤ a.

(ii) Antisymmetry: ifa ≤ b and b ≤ a, then a = b.

(iii) Transitivity: ifa ≤ b and b ≤ c, then a ≤ c.

The relation ≤ is called the partial order of L. A special type of partial order is a
well order. A well ordered set is a poset that has a least element and for which every
element is comparable. Figure 2.2 illustrates a poset and a well ordered set using a Hasse
diagram, which will be used throughout.

10 Chapter 2. Preliminaries

c

a

b

d c

a

b

d

(a) Single rooted
tree

d

a

c

b

d

a

c

b

(b) Chain of
a,b,c,d.

Figure 2.2: Example of a partial order and a well order. (a) Shows a partial order drawn as
a directed graph and as a Hasse diagram. (b) Shows a well order also drawn as a directed
graph and as a Hasse diagram. The Hasse diagram is drawn such that if a ≤ b, then
a ∈ L is drawn below b ∈ L. An edge is drawn between a and b if they are comparable
and one covers the other. That is if say a ≤ b and they are immediate neighbours.

2.3.2 Semi-Lattice Algebra

Join Semi-Lattice

In order theory, a join semi-lattice is a partial order (L,≤) in which every pair of ele-
ments a, b ∈ L has a least upper bound (their supremum) (Grätzer, 2011). The algebraic
definition is as follows:

Definition 2.3.2. A join semi-lattice is a set L equipped with the binary operator ∨ (join,
disjunction) which satisfies the following join semi-lattice axioms for a, b, c in L:

(i) Idempotence: a ∨ a = a.

(ii) Commutativity: a ∨ b = b ∨ a.

(iii) Associativity: a ∨ (b ∨ c) = (a ∨ b) ∨ c.

A join semi-lattice algebra (L,∨) induces a join semi-lattice order (L,≤) with the
relation ≤ given by

a ≤ b ⇐⇒ a ∨ b = b.

Similarly, a join semi-lattice order (L,≤) induces a join semi-lattice algebra (L,∨)
with the binary operator ∨ given by

a ∨ b = sup{a, b}.
Note that L is bounded above if ∨

L = sup
L∈L

L

exists. Hence the order theoretic and the algebraic definitions are equivalent. We will
henceforth be using the algebraic definition, noting the induced partial order whenever
needed.

2.3. Lattice Theory 11

Example 2.3.1. Consider a finite set L with cardinality |L| ≥ 1. Then the set M of

subsets N ⊆ L with cardinalities |N | ≥ d |L|
2
e forms a partial order under the usual ⊆

relation. Hence it also forms a join semi-lattice (M,∨) with

a ∨ b = sup{a, b} ∀a, b ∈M.

Figure 2.4 shows the Hasse diagram of such a semi-lattice for a 4 element set, {a, b, c, d}.

{a,b,c,d}

{a,b,c} {a,b,d} {b,c,d}{a,c,d}

{a,b} {a,c}

{b,c}

{a,d} {b,d} {c,d}

Figure 2.3: Join semi-lattice on subsets of {a, b, c, d} with at least 2 elements. The Hasse
diagram is ordered by is a subset of.

Meet Semi-Lattice

In order theory, a meet semi-lattice is a partial order (L,≤) in which every pair of elements
a, b ∈ L has a greatest lower bound (their infimum) (Grätzer, 2011). The algebraic
definition is as follows:

Definition 2.3.3. A meet semi-lattice (L,∧) is a set L equipped with the binary operator
∧ (meet, conjunction) which satisfies the following meet semi-lattice axioms for a, b, c in
L:

(i) Idempotence: a ∧ a = a.

(ii) Commutativity: a ∧ b = b ∧ a.

(iii) Associativity: a ∧ (b ∧ c) = (a ∧ b) ∧ c.

A meet semi-lattice algebra (L,∧) induces a meet semi-lattice order (L,≤) with the
relation ≤ given by

a ≤ b ⇐⇒ a ∧ b = a.

Similarly, a meet semi-lattice order (L,≤) induces a meet semi-lattice algebra (L,∧)
with the binary operator ∧ given by

a ∧ b = inf{a, b}.
Note that L is bounded below if ∧

L = inf
L∈L

L

12 Chapter 2. Preliminaries

exists. Hence the order theoretic and the algebraic definitions are equivalent. We will
henceforth be using the algebraic definition, noting the induced partial order whenever
needed.

Example 2.3.2. Any single rooted tree (T , <) forms a meet semi-lattice (T ,∧) with

a ∧ b = inf{a, b}.

Figure 2.4 shows an example of this for a set with 10 elements.

a

c db

i jhf ge

Figure 2.4: Meet semi-lattice induced by a tree with 10 nodes.

2.3.3 Lattice Algebra

In order theory, a lattice is a partial order (L,≤) in which every pair of elements a, b ∈
L has a least upper bound (their supremum) and a greatest lower bound (their infi-
mum) (Grätzer, 2011). The algebraic definition is as follows:

Definition 2.3.4. A Lattice algebra (L,∨,∧) is a set L equipped with the binary operators
∨ and ∧ which satisfies the following lattice axioms for a, b, c in L:

(i) Idempotence: a ∧ a = a ∨ a = a.

(ii) Commutativity: a ∧ b = b ∧ a and a ∨ b = b ∨ a.

(iii) Associativity: a ∧ (b ∧ c) = (a ∧ b) ∧ c and a ∧ (b ∨ c) = (a ∨ b) ∨ c.

(iv) Absorption: a ∧ (a ∨ b) = a ∨ (a ∧ b) = a.

In other words a lattice is both a join semi-lattice and a meet semi-lattice that satisfies
the absorption property.

A lattice algebra (L,∨,∧) induces a lattice order (L,≤) with the relation ≤ given by

a ≤ b ⇐⇒ a ∨ b = b,

or

a ≤ b ⇐⇒ a ∧ b = a.

Both definitions of ≤ are the equivalent. The join is hence said to be the dual of
meet. Similarly, a lattice order (L,≤) induces a lattice algebra (L,∨,∧) with the binary
operators ∨ and ∧ given by

2.3. Lattice Theory 13

a ∨ b = sup{a, b},
and

a ∧ b = inf{a, b}.
Note that L is bounded if ∨

L = sup
L∈L

L,

and ∧
L = inf

L∈L
L

exists. Hence the order theoretic and the algebraic definitions are equivalent. We will
henceforth be using the algebraic definition, noting the induced partial order whenever
needed.

Example 2.3.3. Consider the partition of a set L, which is a set of disjoint non-empty
subsets of L such that its disjoint union gives back L. The set of all partitions of any set
L forms a lattice ordered by refinement. A partition refines another if all its elements are
subsets of elements of the other partition (Comtet, 2012). Figure 2.5 shows the lattice
structure of the partitions of a 4 element set.

Figure 2.5: Hasse diagram of the partitions of a 4 element set.

2.3.4 De Morgan Algebra

The De Morgan algebra gives us an intuitive notion for negation, that is similar to that
of propositional logics but with less restrictions (Monteiro, 1974).

Definition 2.3.5. A De Morgan algebra (L,∨,∧,¬) is a set L equipped with the binary
operators ∨ and ∧, and the unary operator ¬ (involution,negation), which satisfies the
following De Morgan algebra axioms for a, b, c in L:

14 Chapter 2. Preliminaries

(i) Idempotence: a ∧ a = a ∨ a = a.

(ii) Commutativity: a ∧ b = b ∧ a and a ∨ b = b ∨ a.

(iii) Associativity: a ∧ (b ∧ c) = (a ∧ b) ∧ c and a ∧ (b ∨ c) = (a ∨ b) ∨ c.

(iv) Absorption: a ∧ (a ∨ b) = a ∨ (a ∧ b) = a.

(v) Distributivity: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

(vi) Identity: there exists 0,1 in L such that

0 ∧ a = 0

0 ∨ a = a

1 ∧ a = a

1 ∨ a = 1

(vii) De Morgan involution: ¬¬a = a and ¬(a ∨ b) = ¬a ∧ ¬b.

In other words a De Morgan algebra is a bounded distributive lattice that’s equipped
with a De Morgan involution (a negation operator that satisfies the De Morgan laws).

Example 2.3.4. De-Morgan algebra is the structure used for fuzzy logics (Klir & Yuan,
1995) where logic values range from 0 to 1. Fuzzy logics in turn is applied to a wide range
of fields such as in control theory and artificial intelligence (Yen & Langari, 1999).

2.3.5 Boolean Algebra

The Boolean algebra abstracts the concepts of propositional logics and set theory (Grätzer,
2011).

Definition 2.3.6. A Boolean algebra (L,∨,∧,¬) is a set L equipped with the binary
operators ∨ (disjunction) and ∧ (conjunction), and the unary operator ¬ (negation),
which satisfies the following Boolean algebra axioms for a, b, c in L:

(i) Idempotence: a ∧ a = a ∨ a = a.

(ii) Commutativity: a ∧ b = b ∧ a and a ∨ b = b ∨ a.

(iii) Associativity: a ∧ (b ∧ c) = (a ∧ b) ∧ c and a ∧ (b ∨ c) = (a ∨ b) ∨ c.

(iv) Absorption: a ∧ (a ∨ b) = a ∨ (a ∧ b) = a.

(v) Distributivity: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

(vi) Identity: there exists 0,1 in L such that

0 ∧ a = 0

0 ∨ a = a

1 ∧ a = a

1 ∨ a = 1

2.4. Conclusion 15

(vii) Complements: for every a in L, there exists an element a′ in L such that a∧ a′ = 0
and a ∨ a′ = 1.

In other words a Boolean algebra is a De Morgan algebra whose involution satisfies
the law of the excluded middle (a∨ a′ = 1) and the law of non contradiction (a∧ a′ = 0).

This structure will be of particular interest as we aim to develop zero-shot logical
composition of tasks.

2.4 Conclusion

Reinforcement learning deals with agents that learn to act optimally in an environment
while lattice theory deals with abstracted concepts of logics. In this chapter we briefly
introduced both fields and described some of their main concepts that will be used in
later chapters.

Chapter 3

Composing Tasks

3.1 Introduction

A first step towards enabling agents to solve new compositional tasks is to formally define
what these composed tasks are. Since in reinforcement learning tasks are commonly
modelled as MDPs, we want principled ways of composing these MDPs to produce new
MDPs that model a desired task specification. We do this by leveraging the structure of
lattice algebras, since they are the mathematical structures that abstracts the notion of
disjunction, conjunction and negation.

Hence the main contributions of this chapter are as follows:

� We establish the notion of a task lattice, which formalises the specification of tasks
as arbitrary disjunctions and conjunctions of known tasks.

� We introduce a definition for the negation of tasks, allowing us to specify tasks as
arbitrary disjunctions, conjunctions, and negations of known tasks. We formalise
this under a De Morgan algebra.

� By adding the constraint that goals are either desirable or not, we formalise the full
logical specification of tasks under a Boolean algebra.

� We show that this Boolean task algebra is in fact isomorphic to a power set algebra
on the set of goals. This gives us the notion of base tasks that leads to a super-
exponential explosion in task specifications.

� Finally we demonstrate that in general standard value functions do not encode
enough knowledge about learned tasks to be able to solve logical task specifications
without extra learning.

This chapter is structured as follows. We present related work on task and value
function composition in Section 3.2. Since we intend to formalise the various compositions
of tasks, we first describe the class of MDPs which will be considered as a set of tasks
in Section 3.3. In Section 3.4 we formally establish composition of these tasks under
relevant algebraic structures. Having formalised the logical specification of tasks, we
show their relationship with the power set algebra in Section 3.5. With the tasks specified
by composing other tasks formally defined, we show in Section 3.6 that standard value
functions are insufficient to solve them without extra learning.

16

3.2. Related Work 17

3.2 Related Work

The ability to compose tasks and value functions was first demonstrated using the linearly-
solvable MDP framework (Todorov, 2007), where value functions could be composed to
solve tasks similar to the disjunctive case (Todorov, 2009). Van Niekerk et al. (2019)
show that the same kind of composition can be achieved using entropy-regularised RL
(Fox et al., 2016), and extend the results to the standard RL setting, where agents can
optimally solve the disjunctive case. Using entropy-regularised RL, Haarnoja et al. (2018)
approximates the conjunction of tasks by averaging their reward functions, and demon-
strates that by averaging the optimal value functions of the respective tasks, the agent
can achieve near-optimal performance. Hunt et al. (2019) extends this result by com-
posing value functions to solve the average reward task exactly, which approximates the
true conjunctive case. More recently, Peng et al. (2019) introduce a few-shot learning
approach to compose policies multiplicatively. Although lacking theoretical foundations,
results show that an agent can learn a weighted composition of existing base skills to solve
a new complex task.

All these works consider disjunctions and conjunctions of tasks separately. In this
chapter we unify them to obtain tasks specified as arbitrary disjunction of conjunctions
(or conjunction of disjunctions), and further extend them to include negations.

3.3 Tasks

In this work we are interested in goal-reaching tasks. This is because they lend themselves
to the lifelong setting where an agent is given tasks sampled from some distribution
throughout its lifetime (Abel et al., 2018). We therefore consider a family of related tasks
M with an absorbing set G ⊆ S and restricted by the following assumption:

Assumption 3.3.1. For all tasks in a set of tasks M, (i) the tasks share the same state
space, action space and transition dynamics, (ii) the transition dynamics are determin-
istic, and (iii) reward functions differ between tasks only on the absorbing set G. That
is, for all M1,M2 ∈ M with reward functions rM1 and rM2 respectively, we have that
rM1(s, a) = rM2(s, a) = rs,a ∈ R for all s ∈ S \ G and a ∈ A.

Assumption 3.3.1 is similar to that of Todorov (2007) and identical to Van Niekerk
et al. (2019), and imply that each task can be uniquely specified by its reward function.
Note that because all tasks share the same transition dynamics, they must formally also
share the same absorbing states. We consider the absorbing set as the set of all achievable
goals in the environment, and each task is simply defined by how desirable each of those
goals are. The assumption that the reward functions only differ on the absorbing set
ensures the agent’s experience before reaching goal states is consistent across all tasks.

Although we have placed restrictions on the reward functions, the above formulation
still allows for a large number of tasks to be represented. Importantly, tasks with dense
rewards in the absorbing set can be formulated under these restrictions.

18 Chapter 3. Composing Tasks

3.4 Algebra of Tasks

In this section we formalise the logical composition of tasks.

3.4.1 Task Lattice

Having established how a lattice algebra abstracts the usual concept of disjunction and
conjunction, we also use it to formalise the meaning of disjunction and conjunction of
tasks. Since we have that tasks differ only in their reward functions, and the rewards over
S × A are partially ordered with pointwise ≤ (the usual ≤ relation on R), we have that
the reward functions define a partial order on the tasks. The resulting partially ordered
set of tasks is formally stated as follows:

Proposition 3.4.1. Let M be a set of tasks, and M1,M2 ∈ M with reward functions
rM1 , rM2 respectively. Then (M,≤) is a partially ordered set with the relation ≤ given by

M1 ≤M2 if rM1(s, a) ≤ rM2(s, a) for all (s, a) ∈ S ×A.
Proof. Follows from the usual ≤ relation on R.

Since the rewards are real valued every pair has a least upper bound (their sup) and a
greatest lower bound (their inf). Note how the resulting real functions after pointwise inf
and sup are clearly still valid task rewards. Hence the poset of tasks (M,≤) has a least
upper bound sup{M1,M2} ∈ M and a greatest lower bound inf{M1,M2} ∈ M for any
pair of task M1,M2 ∈M (since they only differ on their rewards). The lattice (M,∨,∧)
induced by this partial order trivially follows with the binary operators ∨ and ∧ given
by M1 ∨M2 := sup{M1,M2} and M1 ∧M2 := inf{M1,M2}. We define these operators
formally as follows:

Definition 3.4.1. Let M be a set of tasks. The join and meet operators on M are
respectively given by

∨ : M×M→M
(M1,M2) 7→ (S,A, ρ, rM1∨M2 , γ), where rM1∨M2 : S ×A → R

(s, a) 7→ sup{rM1(s, a), rM2(s, a)},

∧ : M×M→M
(M1,M2) 7→ (S,A, ρ, rM1∧M2 , γ), where rM1∧M2 : S ×A → R

(s, a) 7→ inf{rM1(s, a), rM2(s, a)}.
In fact (M,∨,∧) forms a distributive lattice. Using the definitions of ∨ and ∧, we

state this as follows:

Proposition 3.4.2. Let M be a set of tasks. Then (M,∨,∧) is a distributive lattice.

Proof. Follows from the properties of inf and sup and their distributivity.

Given a non-empty finite set O of lower bounded subsets of tasks N ⊂ M, the task
lattice (M,∨,∧) gives us the principled way of specifying the disjunction of conjunctions,∨

N∈O

(∧
N∈N

N

)
= (S,A, ρ, r∨

O

∧
N
, γ), where r∨

O

∧
N

: (s, a) 7→ sup
N∈O

(
inf
N∈N

rN(s, a)

)
.

3.4. Algebra of Tasks 19

Similarly, given a non-empty finite set O of upper bounded subsets of tasks N ⊂M,
the conjunction of disjunctions is given by,

∧
N∈O

(∨
N∈N

N

)
= (S,A, ρ, r∧

O

∨
N
, γ), where r∧

O

∨
N

: (s, a) 7→ inf
N∈O

(
sup
N∈N

rN(s, a)

)
.

Further more if M is bounded,1 then it forms a complete distributive lattice. This
means that the above holds true for any non-empty subset of M.

Example 3.4.1. Consider the simple grid world domain where an agent may be asked
to go to any position on the xy-plane. The agent can move in any of the four cardinal
directions at each timestep, but colliding with a wall leaves the agent in the same location.
We add a 5th action for “stay” that the agent chooses to achieve goals. A goal position
only becomes terminal if the agent chooses to stay in it. The transition dynamics are
deterministic. The internal rewards (rewards for all non-terminal states) are rMIN and
the goal rewards (rewards on the absorbing set) range from rMIN to rMAX. That is, an
agent receives a reward of rMIN as it acts in the environment but when it chooses to stay
at any location, it receives a reward between rMIN and rMAX depending on how close it is
to the desired goal locations.

Consider the specification of two tasks, ML and MD, in which an agent must navigate
to the left and bottom of the xy-plane respectively. Figure 3.1 shows the rewards of the
task specified by their disjunction and conjunction, which produces the task in which an
agent must navigate to the left or bottom walls or to the corner of left and bottom walls
respectively.

(a) ML (b) MD (c) ML ∨MD (d) ML ∧MD

Figure 3.1: Rewards at terminal states for the disjunction and conjunction of tasks in
gridworld domain (any position becomes terminal if the agent chooses to stay in it). All
internal rewards are rMIN. Figures (a)-(b) shows the dense goal rewards for the left and
down tasks. (c) shows the rewards of their disjunction. (d) shows the rewards of their
conjunction.

3.4.2 De Morgan Task Algebra

Having formalised the meaning of disjunction and conjunction of tasks, the next natural
question is what is the meaning of the negation of a task? A De Morgan algebra enables us
to define it by adding minimal required properties that encapsulates the desired behaviour
of a negation. We first make the following assumption:

Assumption 3.4.1. For all tasks in a set of tasks M, their reward function is bounded
by [rMIN, rMAX] ⊂ R

1For simplicity, we adopt the convention of Grätzer (2011) of referring to an algebraic structure (e.g
the lattice (M,∨,∧)) by the set on which it is defined (M), when that doesn’t lead to any ambiguity.

20 Chapter 3. Composing Tasks

Any set of tasksM satisfying Assumption 3.4.1 has boundsMSUP ,MINF ∈M whose
respective reward functions are

rMSUP
: S ×A → R

(s, a) 7→ sup
M∈M

rM(s, a),

rMINF
: S ×A → R

(s, a) 7→ inf
M∈M

rM(s, a).

We now define the negation of a task as follows:

Definition 3.4.2. Let M be a bounded set of tasks with bounds MSUP ,MINF ∈ M.
Define the negation operator as

¬ : M→M
M 7→ (S,A, ρ, r¬M , γ), where r¬M : S ×A → R

(s, a) 7→ (rMSUP
(s, a) + rMINF

(s, a))− rM(s, a).

The intuition for this definition is straightforward. For example if for a given task
taking an action at a given state gives the smallest reward, then the opposite task
should give the highest reward for that state-action. Note that for M ∈ M, we have
(S,A, ρ, r¬M , γ) ∈M since r¬M is a valid task reward function.

We finally formalize the interaction of the negation of tasks with the conjunction and
disjunction of tasks as follows:

Proposition 3.4.3. Let M be a set of tasks satisfying Assumption 3.4.1.
Then (M,∨,∧,¬,MSUP ,MINF) is a De Morgan algebra.

Proof. Let M1,M2 ∈M. We show that ¬,∨,∧ satisfy the De Morgan algebra properties
(i) – (vii).

(i)–(v): These follow from the properties of inf and sup.

(vi): This follows from the bounds MSUP ,MINF ∈ M which are guaranteed to exist
due to Assumption 3.4.1.

(vii): The first condition easily follows from the definition of ¬. For the second condi-
tion, let r¬(M1∨M2) be the reward function for ¬(M1 ∨M2). Then for all (s, a) in
S ×A,

r¬(M1∨M2)(s, a) = (rMSUP
(s, a) + rMINF

(s, a))− sup
M∈{M1,M2}

rM(s, a)

= (rMSUP
(s, a) + rMINF

(s, a)) + inf
M∈{M1,M2}

−rM(s, a)

= inf
M∈{M1,M2}

(rMSUP
(s, a) + rMINF

(s, a))− rM(s, a)

= r¬M1∧¬M2(s, a).

Thus ¬(M1 ∨M2) = ¬M1 ∧ ¬M2.

We can now specify arbitrary disjunction, conjunction, and negation of tasks.

3.4. Algebra of Tasks 21

Example 3.4.2. Consider the simple grid world domain introduced in Example 3.4.1
where an agent may be asked to go to any position on the xy-plane. Further consider the
specification of two tasks, ML and MD, in which an agent must navigate to the left and
bottom of the xy-plane respectively. Figure 3.2 shows the rewards of the tasks specified
by their negation, ¬ML = MR and ¬MD = MT, in which an agent must navigate to
the right and top of the xy-plane respectively. This shows that the negation defined above
does indeed have the expected semantics. The figure also shows that arbitrary disjunction,
conjunction, and negation of tasks also produces tasks with the desired semantics.

(a) ¬ML (b) ¬MD (c) ML
−∨MD (d) ML YMD (e)

(ML∨¬ML)
∨

(MD∨¬MD)
(f)

(ML∧¬ML)
∧

(MD∧¬MD)

Figure 3.2: Rewards at terminal states for the composition of tasks in gridworld domain
(any position becomes terminal if the agent chooses to stay in it). All internal rewards
are rMIN. Figures (a)-(b) shows the rewards for the right and top tasks, specified by the
negation of the left and down tasks respectively. (c) shows the rewards of the task specified
by the negation of the disjunction of the left and down tasks—ML∨̄MD := ¬(ML ∨MD).
(d) shows the rewards of the task specified by the exclusive disjunction of the left and
down tasks—ML YMD := (ML ∨MD) ∧ ¬(ML ∧MD). (e) shows the rewards of the task
specified by the disjunction of the left, right, down and top tasks. (f) shows the rewards
of the task specified by the conjunction of the left, right, down and top tasks.

3.4.3 Boolean Task Algebra

While the De Morgan task algebra allows us to do arbitrary logical compositions of tasks
with dense goal rewards, it gives no guarantees on some desired properties of logics. In
particular these task compositions do not always satisfy the laws of the excluded middle,
M1 ∨ ¬M1 =MSUP , and of non contradiction, M1 ∧ ¬M1 =MINF . This can be clearly
seen in say Figure 3.2(f), in which the agent needs to go to the left wall and not to the
left wall and to the bottom wall and not to the bottom wall. While in this case because of
the choice of dense rewards it produces a meaningful task — the task in which the agent
needs to go to the center — in general we may want to guarantee that contradicting task
specifications are equally meaningless. In this section we show that by restricting the set
of tasks to those with sparse rewards, we obtain the full properties of logics on them.

The following sparseness assumption ensures tasks have a Boolean nature. Assump-
tion 3.4.2 says that tasks are defined by goals which are either desirable or not.

Assumption 3.4.2. For all tasks in a set of tasks M which adhere to Assumption 3.4.1
, the set of possible terminal rewards consists of only two values. That is, for all (g, a) in
G × A, we have that r(g, a) ∈ {r∅, rU} ⊂ R with r∅ ≤ rU .2

We can now formalize logics on the set of tasks.

2Since Assumption 3.4.2 includes Assumption 3.4.1, any set of tasks satisfying it forms a De Mogran
task algebra according to Proposition 3.4.3.

22 Chapter 3. Composing Tasks

Proposition 3.4.4. Let M be a set of tasks satisfying Assumption 3.4.2.
Then (M,∨,∧,¬,MSUP ,MINF) is a Boolean algebra.

Proof. Let M1,M2 ∈M. We show that ¬,∨,∧ satisfy the Boolean properties (i) – (vii).

(i)–(vi): These follow from the De Morgan task algebra sinceM satisfies its assumptions.

(vii): Let rM1∧¬M1 be the reward function for M1 ∧ ¬M1. Then for all (s, a) in S ×A,

rM1∧¬M1(s, a) =

{
inf{rM1(s, a), (rU + r∅)− rM1(s, a)}, if s ∈ G
inf{rs,a, (rs,a + rs,a)− rs,a}, otherwise.

=

r∅, if s ∈ G and rM1(s, a) = rU

r∅, if s ∈ G and rM1(s, a) = r∅

rs,a, otherwise.

= rMINF
(s, a).

Thus M1 ∧ ¬M1 =MINF , and similarly M1 ∨ ¬M1 =MSUP .

Example 3.4.3. Consider the simple grid world domain introduced in Example 3.4.1
where an agent may be asked to go to any position on the xy-plane. We modify it to
satisfy Assumption 3.4.2 by restricting the goal rewards (rewards on the absorbing set) to
rMIN or rMAX. Consider the specification of two tasks, ML and MD, in which an agent
must navigate to the left and bottom of the xy-plane respectively. Figure 3.3 shows the
rewards of the tasks specified by their logical composition. Note how composing tasks
specified using sparse rewards is semantically different than when tasks are specified using
dense rewards. For example the negation of the left task here now means “do not go to the
left wall” (instead of “go to the right wall” as seen in the dense case). Also meaningless
compositions like the conjunction of “go to the left wall” and “do not go to the left wall”
now give the expected lower bound task, which says no goal is desirable.

(a) ML (b) MD (c) ML ∨MD (d) ML ∧MD (e) ¬ML (f)
(ML∧¬ML)

∧
(MD∧¬MD)

Figure 3.3: Showing composition of boolean tasks in gridworld domain. Figures (a)-(b)
shows the Boolean goal rewards for the left and down tasks, (c)-(f) shows the rewards of
the composed tasks.

Finally we summarize the main differences between the developed task algebras in
Table 3.1. In the next section we show that an additional benefit of the Boolean task
algebra is that it gives us the notion of base tasks.

3.5. Between Task and Power Set Boolean Algebras 23

Unbounded
task space

Dense goal
rewards

Negation of
tasks

Full logics
on tasks

Task lattice X X
De Morgan task algebra X X
Boolean task algebra X X

Table 3.1: Difference between the benefits obtained from each algebraic structure.

3.5 Between Task and Power Set Boolean Algebras

Having established a Boolean algebra over tasks, we show that there exists an equivalence
between them and a power set algebra. We note that Assumption 3.4.2 establishes a
bijection F between the set of tasks M and the power-set P(G ×A), given by

F : P(G × A)→M
H 7→ (S,A, ρ, rH , γ), where rH : S ×A → R

(s, a) 7→

rU , if (s, a) ∈ H
r∅, if (s, a) 6∈ H and s ∈ G
rs,a, otherwise.

The Boolean task algebra together with the bijection between tasksM and the power-
set P(G ×A) gives us the following result.

Proposition 3.5.1. Let M be a set of tasks satisfying Assumption 3.4.2. Then the
Boolean task algebra on M is isomorphic to the power set Boolean algebra on P(G ×A).

Proof. This follows from the bijection F and the fact that it is clearly homomorphic.

This means that all the results that hold for power set Boolean algebras now holds
for Boolean task algebras. In particular consider the case of a set of tasks M with goal
rewards that are sparse and independent of the goal actions. That is, for all tasks in
M goals are either desirable or not. Then the respective Boolean task sub-algebra is
isomorphic to the power set algebra on the absorbing set G with the isomorphism F given
by,

F : P(G)→M
H 7→ (S,A, ρ, rH , γ), where rH : S ×A → R

(s, a) 7→

rU , if s ∈ H
r∅, if s 6∈ H and s ∈ G
rs,a, otherwise.

This means that forM with finite G, we need only a logarithmic number of base tasks
(generators) dlog2 |G|e (for |G| > 1) to specify an exponential number of composed tasks
2|G| = |M|.

Example 3.5.1. Consider a Four Rooms domain (Sutton et al., 1999), where an agent
must navigate in a grid world to particular rooms. Similarly to the gridworld in Exam-
ple 3.4.1, the agent can move in any of the four cardinal directions at each timestep, but
colliding with a wall leaves the agent in the same location. There is a 5th action for “stay”

24 Chapter 3. Composing Tasks

that the agent chooses to achieve goals. A goal position (center of a room) only becomes
terminal if the agent chooses to stay in it. The transition dynamics are deterministic.
The internal rewards (rewards for all non-terminal states) are rMIN and the goal rewards
(rewards on the absorbing set) are sparse (rMIN or rMAX). Figure 3.4 illustrates the layout
of the environment and the goals the agent must reach.

Figure 3.4: The layout of the Four Rooms domain. The circles indicate goals the agent
must reach. We will refer to the goals as top-left, top-right, bottom-left, and
bottom-right.

We can select a minimal set of base tasks (generator tasks) by assigning each goal a
binary number, and then using the columns of the table to select the tasks. Since the set
of achievable goals (the absorbing set) is finite, we can do this assignment using a Boolean
table. We first assign labels to the individual goals by defining a well order over the set
G. The number of base tasks induced by this well order is d| log2 G|e = 2 since |G| = 4.
Table 3.2 illustrates how different well orders on G leads to different choices of base tasks.

Goals MD MR

top-left 0 0
top-right 0 1
bottom-left 1 0
bottom-right 1 1

(a) Goals labled by the well order ≤
given by: bottom− right ≤ bottom
− left ≤ top− right ≤ top− left

Goals MT ML

bottom-right 0 0
bottom-left 0 1
top-right 1 0
top-left 1 1

(b) Goals labled by the well order ≤
given by: top− left ≤ top− right
≤ bottom− left ≤ bottom− right

Table 3.2: Base tasks induced by various well orders on G. Each column represents a base
task, where 0 or 1 for goal g on task M means respectively reward of rM(g, a) = rMIN

or rM(g, a) = rMAX ∀a ∈ A. Note that the goal rewards are enough to specify the tasks
since the internal rewards are the same across all tasks.

Consider for example the well order on G shown in Table 3.2(b). The base tasks
induced are ML and MT, in which an agent must navigate to the 2 left rooms (rooms 1
and 3) and the 2 top rooms (rooms 2 and 3) respectively. Figure 3.5 shows the rewards
of the tasks specified by some of their logical compositions. Figure 3.6 shows the Boolean
table and Hasse diagram for all the 22k = 16 tasks generated by the k = 2 base tasks,
which spans the whole set of tasks, |M| = 2|G| = 16.

3.5. Between Task and Power Set Boolean Algebras 25

(a) ML (b) MT (c) ML ∨MT (d) ML ∧MT (e) ¬ML (f) ML YMT

Figure 3.5: Showing task composition of base tasks in four-rooms domain. Figures (a)-(b)
shows the rewards for the base tasks, (c)-(f) shows the rewards of the composed tasks. Y
represents exclusive disjunction.

Well Order
on 4 goal states

𝑀𝐿

𝑀𝑇

𝑀𝐼𝑁𝐹

𝑀𝐿Λ𝑀𝑇

¬𝑀𝐿Λ𝑀𝑇

𝑀𝑇

𝑀𝐿Λ¬𝑀𝑇

𝑀𝐿

𝑀𝐿 ∨ 𝑀𝑇

𝑀𝐿 ∨ 𝑀𝑇

𝑀𝐿 ∨ 𝑀𝑇

𝑀𝐿 ∨ ¬𝑀𝑇

¬𝑀𝐿

¬𝑀𝐿 ∨ 𝑀𝑇

¬𝑀𝑇

𝑀𝐿 ∨ ¬𝑀𝑇

¬𝑀𝐿 ∨ ¬𝑀𝑇

𝑀𝑆𝑈𝑃

0 1 2 3

3 2

1 0

(a) Boolean table of base and
composed tasks.

1 1 1 1

𝑴𝑺𝑼𝑷

0 1 0 0

𝑴𝑳Λ¬𝑴𝑻

1 0 0 0

𝑴𝑳 ∨𝑴𝑻

0 0 0 0

𝑴𝑰𝑵𝑭

0 0 0 1

𝑴𝑳Λ𝑴𝑻

0 0 1 0

¬𝑴𝑳Λ𝑴𝑻

1 1 0 0

¬𝑴𝑻

0 1 0 1

𝑴𝑳

1 1 1 0

¬𝑴𝑳 ∨ ¬𝑴𝑻

1 0 0 1

𝑴𝑳 ∨ ¬𝑴𝑻

1 0 1 0

¬𝑴𝑳

0 0 1 1

𝑴𝑻

0 1 1 0

𝑴𝑳 ∨𝑴𝑻

1 0 1 1

¬𝑴𝑳 ∨𝑴𝑻

0 1 1 1

𝑴𝑳 ∨𝑴𝑻

1 1 0 1

𝑴𝑳 ∨ ¬𝑴𝑻

(b) Hasse diagram of the Boolean task algebra.

Figure 3.6: Boolean table and Hasse diagram for the four-rooms domain. (a) shows a
well order on G that labels the goals, the induced base tasks from labeling the goals, the
logical expressions for all 16 compositions of the base tasks, their Boolean values and
rewards. (b) illustrates the Boolean task algebra showing the rewards for all 16 tasks in
M, together with the Boolean values and logical expressions that generates them from
the base tasks.

26 Chapter 3. Composing Tasks

3.6 Problem with Standard Value Functions for Zero-

Shot Composition

Having established the logical composition of tasks in the previous sections, we note that
standard value functions are insufficient to solve them in a zero-shot manner. In particular
they are insufficient to do zero-shot conjunction of tasks. To understand why, consider
two tasks that have multiple different goals but at least one common goal. Clearly, there
is a meaningful conjunction between them—namely, achieving the common goal. Now
consider an agent that learns standard value functions for both tasks, and which is then
required to solve their conjunction without further learning. Note that this is impossible
in general, since the standard value function for each task only represents the value of
each state with respect to the nearest goal. That is, for all states where the nearest goal
for each task is not the common goal, the agent has no information about that common
goal.

While previous work has used the average reward function to approximate the con-
junction operator (Haarnoja et al., 2018; Hunt et al., 2019; Van Niekerk et al., 2019),
we note that the tasks specified by averaging the rewards quickly diverges from the task
specified by the min of rewards (the conjunction). In particular Figure 3.7 shows how the
average reward task becomes very different to the min rewards task after only 3 opera-
tions. This highlights the importance of working towards zero-shot composition using the
true logical operators, as it enable multiple arbitrary logical compositions while retaining
the meaning of the specified tasks.

(a) 0.5(rML
+ rMD

) (b) 0.5(rMT
+ rMR

)
(c) 0.5

(
0.5(rML

+rMD
)

+
0.5(rMT

+rMR
)

)

(d) min{rML
, rMD

} (e) min{rMT
, rMR

} (f) min
{

min{rML
,rMD

},
min{rMT

,rMR
}

}
Figure 3.7: Consider 4 tasks, ML, MR, MD, and MT , in which an agent must navigate
to the left, right, down, and top regions of an xy-plane respectively. The top row shows
conjunctions approximated using average of rewards while the bottom one shows true
conjunctions using the min of rewards. From left to right we plot the reward for entering a
region of the goal space for the conjunction ofML andMD, conjunction ofMT andMR, and
conjunction of (ML and MD) and (MT and MR). Note that by averaging reward, terminal
states quickly become equally rewarded, losing the meaning of the true conjunction.

3.7. Conclusion 27

3.7 Conclusion

In this chapter we have formally established the logical composition of tasks. This gives
us a structured and simple way of obtaining the MDP that models a task specified as the
logical composition of other tasks. In the case of tasks with sparse rewards, we introduce
a notion of base tasks and demonstrate how they can be obtained from Boolean tables.
These base tasks are proven sufficient to specify any other task in an environment. Finally
we showed that the knowledge represented by standard value functions is in fact too task
specific, and hence does not encode sufficient information to be able to solve new tasks
zero-shot. In the next chapter we introduce a new type of value function that is much
richer in its knowledge representation.

Chapter 4

Extended Value Functions

4.1 Introduction

In the previous chapter we established how to formally compose tasks but showed that
standard value functions are insufficient to solve them zero-shot. The argument here was
that standard value functions only learn how to achieve the nearest goal and hence do not
encode information about other goals which may be valuable for other tasks. We address
this issue here by introducing a value function that learns about various achievable goals
in the environment. This encodes the intuition that an agent should learn as much as
possible from its experience. It should learn not just how to achieve the best goal, but
also what behaviours achieve the lesser goals or even the bad ones.

The main contributions of this chapter are as follows:

� We introduce a new type of goal oriented value function called extended value
function (EVF) that learns a diversity of solutions for a single task specification.

� We prove that the standard value function for a task can be recovered from this
goal oriented value function by simply maximizing goals.

� We prove that for sample classes of MDPs that naturally model goal-reaching tasks,
the introduced goal oriented value function in fact learns how to achieve any terminal
state in the environment, irrespective of whether it is desired or not for the given
task. That is, for a given task it learns about both its good (positively rewarded)
and bad (negatively rewarded) terminal states.

� We introduce a new learning method called extended q-learning to learn this new
goal oriented value function without the reward function of tasks being provided.
We similarly modify Deep-Q-Networks to learn these new value functions in the
function-approximation case.

This chapter is structured as follows. In Section 4.2 we develop the extended value
functions and prove some of its key properties. Since these are goal-oriented value func-
tions, we discuss some closely related work on other types of goal oriented value functions.
In Section 4.3 we propose methods for learning the extended value functions. Finally in
Section 4.4 we run relevant experiments for the tabular and function-approximation cases.

28

4.2. Theory for Extended Value Functions 29

4.2 Theory for Extended Value Functions

As shown in Section 3.6, the reward and value functions described in Section 2.2 are
insufficient to solve tasks specified by the lattice algebras developed in Section 3.4. We
therefore extend these to define a goal-oriented reward and value function that captures
the criterion that the agent needs to learn not just about the best goal, but also about
all other goals.

Let M = (S,A, p, r, γ) be an MDP with an absorbing set G ⊆ S and whose rewards
are bounded by [rMIN, rMAX]. We define its extended reward function as follows:

Definition 4.2.1. The extended reward function r̄ : S × G × A → R is given by the
mapping

(s, g, a) 7→
{
r̄MIN if g 6= s ∈ G
r(s, a) otherwise,

(4.1)

where r̄MIN ≤ rMIN.

Because we require that tasks share the same transition dynamics, we also require
that the absorbing set of states is shared. Thus the extended reward function adds the
extra constraint that, if the agent enters a terminal state for a different task, it should
receive the smallest reward possible. The goal of the agent now is to compute an extended
Markov policy π̄ : S × G → Pr(A) that optimally solves any task relevant goal. A given
extended policy π̄ is characterised by an extended state-value function defined as follows:

Definition 4.2.2. The extended state-value function V̄ π̄ : S × G → R is given by the
mapping

(s, g) 7→ Eπ̄

[
γ
∞∑
t=0

r̄(st, g, at)

]
. (4.2)

This specifies the expected return obtained under π starting from state s. Similarly
we define the extended Q-value function, Q̄π̄(s, g, a), which defines the expected return
obtained by executing a from s, and thereafter following π̄ to reach g. We define this as
follows:

Definition 4.2.3. The extended action-value function Q̄π̄ : S × G × A → R is given by
the mapping

(s, g, a) 7→ Eπ̄

[
r̄(s, g, a) + γ

∞∑
t=1

r̄(st, g, at)

]
. (4.3)

Since for each g these extended value functions are equivalent to regular value func-
tions, it follows that they satisfy the following Bellman equations,

V̄ π̄(s, g) =
∑
a∈A

π̄(a, s, g)

(
r̄(s, g, a) + γ

∑
s′∈S

p(s, a, s′)V̄ π̄(s′, g)

)
, (4.4)

Q̄π̄(s, g, a) = r̄(s, g, a) + γ
∑
s′∈S

p(s, a, s′)
∑
a∈A

π̄(a, s, g)Q̄π̄(s′, g, a). (4.5)

In fact all standard results on regular value functions also hold here by extension.
This can be shown by simply noting that each g ∈ G corresponds to a well defined
MDP Mg := (S,A, ρ, rMg , γ) with reward function rMg(s, a) := r̄M(s, g, a), hence that

30 Chapter 4. Extended Value Functions

the corresponding set of regular value functions defines the extended value function. In
particular we have that for all goal-oriented MDPs there exist an optimal deterministic
policy π̄∗ ≥ π̄,∀π̄, and unique optimal value functions V̄ ∗ and Q̄∗, such that

V̄ π̄∗(s, g) = V̄ ∗(s, g) = max
π̄

V̄ π̄(s, g) ∀π̄∗,

Q̄π̄∗(s, g, a) = Q̄∗(s, g, a) = max
π̄

Q̄π̄(s, g) ∀π̄∗.

These give rise to the following Bellman optimality equations for extended value func-
tions,

V̄ ∗(s, g) = max
a∈A

(
r̄(s, g, a) + γ

∑
s′∈S

p(s, a, s′)V̄ ∗(s′, g)

)
, (4.6)

Q̄∗(s, g, a) = r̄(s, g, a) + γ
∑
s′∈S

p(s, a, s′) max
a∈A

Q̄∗(s′, g, a). (4.7)

The corresponding Bellman operator and Bellman optimality operator on extended
value functions are respectively given by,[

T π̄V̄ π̄
]

(s, g) = r̄(s, g, π̄(s, g)) + γ
∑
s′∈S

p(s, π̄(s, g), s′)V̄ π̄(s′, g), (4.8)

[
T V̄

]
(s, g) = max

a∈A

[
r̄(s, g, a) + γ

∑
s′∈S

p(s, a, s′)V̄ (s′, g)

]
. (4.9)

Similarly to regular value functions, we note that π̄∗ and V̄ ∗ can be obtained by acting
greedily on Q̄∗. That is,

π̄∗(a, s, g) =

{
1 a = arg maxa′∈A Q̄

∗(s, g, a′)

0 otherwise,

V̄ ∗(s, g) = max
a∈A

Q̄∗(s, g, a).

A main property of EVFs is that the standard reward functions and value functions
can be recovered from their extended versions through the following theorem.

Theorem 4.2.1. Let rM , r̄M , Q
∗
M , Q̄

∗
M be the reward function, extended reward function,

optimal Q-value function, and optimal extended Q-value function for a task M in M.
Then for all (s, a) in S ×A, we have

(i) rM(s, a) = max
g∈G

r̄M(s, g, a), and (ii) Q∗M(s, a) = max
g∈G

Q̄∗M(s, g, a).

Proof.

(i):

max
g∈G

r̄M(s, g, a) =

{
max{r̄MIN, rM(s, a)}, if s ∈ G
max
g∈G

rM(s, a), otherwise.

= rM(s, a) (r̄MIN ≤ rMIN ≤ rM(s, a) by definition).

4.2. Theory for Extended Value Functions 31

(ii): Each g in G can be thought of as defining an MDP Mg := (S,A, ρ, rMg) with
reward function rMg(s, a) := r̄M(s, g, a) and optimal Q-value function Q∗Mg

(s, a) =

Q̄∗M(s, g, a). Then using (i) we have rM(s, a) = max
g∈G

rMg(s, a) and from Van Niekerk

et al. (2019, Corollary 1), we have that Q∗M(s, a) = max
g∈G

Q∗Mg
(s, a) = max

g∈G
Q̄∗M(s, g, a).

In the same way, we can also recover the optimal policy from the extended action-
value functions by first applying Theorem 4.2.1, and acting greedily with respect to the
resulting action-value function.

For the rest of this work we focus on two classes of MDPs that naturally model goal
reaching tasks, namely deterministic shortest path problems (Bertsekas & Tsitsiklis, 1991)
and discounted goal reaching problems.

4.2.1 Related Work

EVFs are similar to DG functions (Kaelbling, 1993), except here we use task-dependent
reward functions, as opposed to measuring distance between states. It is also similar to
universal value function approximators (UVFAs) (Schaul et al., 2015), but differs in that it
uses the extended reward function definition. UVFAs use general value functions (Sutton
et al., 2011) with goal based reward functions, where each goal specify a separate task, and
to act in the environment the goal for the desired task need to be provided. In contrast we
use the standard reward function of a single task. The extended reward function we define
is implicit to the agent and the agent acts in the environment by using Theorem 4.2.1.

Perhaps the closest related work is hindsight experience replay (Andrychowicz et al.,
2017), where an agent learns to achieve multiple goals for a single overall task. However
they still use UVFAs with goal based reward functions that are provided in advance. This
means the agent still needs to be given the goal to be achieved since that defines the task
to be solved.

4.2.2 EVFs for Deterministic Shortest Path Tasks

Deterministic shortest path problems represent the class of deterministic undiscounted
MDPs with an absorbing set G ⊆ S. Since it considers undiscounted MDPs, the value
function of policies that reach G is guaranteed to be bounded by augmenting the state
space with a virtual state ω such that ρ(s,a)(ω) = 1 for all (s, a) in G × A, and r = 0
after reaching ω. Here a policy that is guaranteed to eventually reach G is called a proper
policy (James & Collins, 2006; Van Niekerk et al., 2019). To guarantee that an optimal
policy does reach an absorbing state, it is assumed that the value functions for improper
policies—those that never reach absorbing states—are unbounded below.

For the EVF of a deterministic shortest path task, the choice of r̄MIN is particularly
meaningful. It can be shown that for r̄MIN ≤ min{rMIN, (rMIN−rMAX)D},1 where D is the
diameter of the MDP (Jaksch et al., 2010), the EVF encodes how to achieve any goal in
an environment irrespective of the specific task from which it was learned. We show this
in Theorem 4.2.2. This choice of r̄MIN says that since deterministic shortest path tasks

1The diameter is defined as D = maxs6=s′∈S minπ E [T (s′|π, s)], where T is the number of timesteps
required to first reach s′ from s under π.

32 Chapter 4. Extended Value Functions

require an agent to learn to achieve desired terminal states, if the agent enters a terminal
state for a different task, it should receive the largest penalty possible.

Henceforth we will let r̄MIN ≤ min{rMIN, (rMIN − rMAX)D} for deterministic shortest
path tasks.2

Theorem 4.2.2. Denote S− = S \ G as the non-terminal states of a set of deterministic
shortest path tasksM. Let M1,M2 ∈M, and let each g in G define MDPs M1,g and M2,g

with reward functions

rM1,g(s, a) := r̄M1(s, g, a) and rM2,g(s, a) := r̄M2(s, g, a) for all (s, a) in S ×A.

Then for all g in G and s in S−,

π∗g(s) ∈ arg max
a∈A

Q∗M1,g
(s, a) iff π∗g(s) ∈ arg max

a∈A
Q∗M2,g

(s, a).

Proof. Let g ∈ G, s ∈ S− and let π∗g be defined by

π∗g(s
′) ∈ arg max

a∈A
Q∗M1,g

(s, a) for all s′ ∈ S.

If g is unreachable from s, then we are done since for all (s′, a) in S ×A we have

g 6= s′ =⇒ rM1,g(s′, a) =

{
r̄MIN, if s′ ∈ G
rs′,a, otherwise

= rM2,g(s′, a)

=⇒ M1,g = M2,g.

If g is reachable from s, then we show that following π∗g must reach g. Since π∗g is proper,
it must reach a terminal state g′ ∈ G. Assume g′ 6= g. Let πg be a policy that produces
the shortest trajectory to g. Let Gπ∗g and Gπg be the returns for the respective policies.
Then,

Gπ∗g ≥ Gπg

=⇒ G
π∗g
T−1 + rM1,g(g′, π∗g(g

′)) ≥ Gπg ,

where G
π∗g
T−1 =

T−1∑
t=0

rM1,g(st, π
∗
g(st)) and T is the time at which g′ is reached.

=⇒ G
π∗g
T−1 + r̄MIN ≥ Gπg , since g 6= g′ ∈ G

=⇒ r̄MIN ≥ Gπg −Gπ∗g
T−1

=⇒ (rMIN − rMAX)D ≥ Gπg −Gπ∗g
T−1, by definition of r̄MIN

=⇒ G
π∗g
T−1 − rMAXD ≥ Gπg − rMIND, since Gπg ≥ rMIND

=⇒ G
π∗g
T−1 − rMAXD ≥ 0

=⇒ G
π∗g
T−1 ≥ rMAXD.

But this is a contradiction since the result obtained by following an optimal trajectory
up to a terminal state without the reward for entering the terminal state must be strictly

2In practice, we can simply set r̄MIN to be the lowest finite value representable by the data type used
for rewards.

4.2. Theory for Extended Value Functions 33

less that receiving rMAX for every step of the longest possible optimal trajectory. Hence
we must have g′ = g. Similarly, all optimal policies of M2,g must reach g. Hence π∗g(s) ∈
arg max

a∈A
Q∗M2,g

(s, a). Since M1 and M2 are arbitrary elements ofM, the reverse implication

holds too.

Combining Theorems 4.2.1 and 4.2.2, we can extract the greedy action from the ex-
tended value function by first maximising over goals, and then selecting the maximising
action: π∗(s) ∈ arg maxa∈Amaxg∈G Q̄

∗(s, g, a). If we consider the extended value function
to be a set of standard value functions (one for each goal), then this is equivalent to first
performing generalised policy improvement (Barreto et al., 2017), and then selecting the
greedy action.

Finally, much like the regular definition of value functions, the extended Q-value func-
tion can be written as the sum of rewards received by the agent until first encountering a
terminal state.

Corollary 4.2.2.1. Denote G∗s:g,a ∈ R as the sum of rewards starting from s, taking the
action a, and following an optimal policy up until, but not including, g. Then let M ∈M
and Q̄∗M be the extended Q-value function. Then for all s ∈ S, g ∈ G, a ∈ A, we have that

Q̄∗M(s, g, a) = G∗s:g,a + r̄M(s′, g, a′), where s′ ∈ G and a′ ∈ arg max
b∈A

r̄M(s′, g, b).

Proof. This follows directly from Theorem 4.2.2. Since all tasks M ∈ M share the
same optimal policy π∗g up to (but not including) the goal state g ∈ G, their return

G
π∗g
T−1 =

∑T−1
t=0 rM(st, π

∗
g(st)) is the same up to (but not including) g.

4.2.3 EVFs for Discounted Goal Reaching Tasks

Another class of MDPs that naturally model goal reaching tasks is discounted MDPs with
an absorbing set G ⊆ S and zero internal rewards (Abel et al., 2018). Since these MDPs
are discounted, having no internal rewards and positive goal rewards ensures the agent
learns to reach the absorbing states (if they are indeed reachable and the discounting
is sufficiently small). Hence this class of MDPs have reward functions of the form r :
S ×A 7→ [0, rMAX].

A natural choice for r̄MIN here is 0. This gives us similar results to Theorem 4.2.2 and
Corollary 4.2.2.1. Henceforth we will let r̄MIN = rMIN = 0 for discounted goal-reaching
tasks.

Theorem 4.2.3. Denote S− = S \ G as the non-terminal states of a set of discounted
goal-reaching tasksM. Let M1,M2 ∈M, and let each g in G define MDPs M1,g and M2,g

with reward functions

rM1,g(s, a) := r̄M1(s, g, a) and rM2,g(s, a) := r̄M2(s, g, a) for all (s, a) in S ×A.

Then for all g in G and s in S−, there exist an optimal policy π∗g such that

π∗g(s) ∈ arg max
a∈A

Q∗M1,g
(s, a) and π∗g(s) ∈ arg max

a∈A
Q∗M2,g

(s, a).

34 Chapter 4. Extended Value Functions

Proof. Let g ∈ G, s ∈ S−.

If g is unreachable from s, then we are done since for all (s′, a) in S ×A we have

g 6= s′ =⇒ rM1,g(s′, a) =

{
r̄MIN, if s′ ∈ G
rs′,a, otherwise

= rM2,g(s′, a)

=⇒ M1,g = M2,g.

If g is reachable from s, then there exist a π∗g given by

π∗g(s
′) ∈ arg max

a∈A
Q∗M1,g

(s, a) for all s′ ∈ S.

that reaches g. This follows from the fact that action values are bounded below
by 0 (since rewards are non-negative) and any policy πg that doesn’t reach g leads to
Q
πg
M1,g

(s, a) = 0 (since rM1,g(s, a) = rs,a = 0 at internal states and rM1,g(s, a) = r̄MIN = 0
at absorbing states s 6= g). Similarly, there exist an optimal policy of M2,g that reaches
g. Hence π∗g(s) ∈ arg max

a∈A
Q∗M2,g

(s, a).

Corollary 4.2.3.1. Denote T ∗s:g,a as the length of the trajectory generated by an optimal
policy π∗g starting from s and taking action a. Then let M ∈M and Q̄∗M be the extended
Q-value function. Then for all s ∈ S, g ∈ G, a ∈ A, there exists a T ∗s:g,a ∈ R ∪ {∞} such
that

Q̄∗M(s, g, a) = γT
∗
s:g,arM(g, a′), where a′ ∈ arg max

b∈A
rM(g, b).

Proof. This follows directly from Theorem 4.2.3. Since all tasks M ∈M share a common
optimal policy π∗g up to (but not including) g, the length T ∗s:g,a of the trajectory generated
by it is the same. Further more since r̄M(s, g, a) = rs,a = 0 at internal states and
r̄M(s, g, a) = r̄MIN = 0 at absorbing states s 6= g, the action values only depend on the
rewards at s = g where r̄M(s, g, a) = rM(g, a).

4.3 Learning EVFs

Having formally established EVFs, we now propose ways of learning them. We note that
while learning methods in the large body of work on goal conditioned value functions
can be used to learn EVFs, they require reward functions to be available to the learning
methods (Andrychowicz et al., 2017; Schaul et al., 2015; Kaelbling, 1993; Veeriah et al.,
2018; Foster & Dayan, 2002; Mirowski et al., 2017; Moore et al., 1999). Here we want to
learn EVFs only with rewards obtained by interacting with the environment, just like in
learning regular value functions.

Since EVFs can be thought of as a set of regular value functions each defined by a
goal g ∈ G, they can be learned by any suitable method in reinforcement learning, albeit
not necessarily in an efficient way. Here we propose an extended version of Q-learning
(Watkins, 1989) and deep Q-learning (Mnih et al., 2015) to learn EVFs in the tabular
and function-approximation case respectively.

4.3. Learning EVFs 35

4.3.1 Tabular Case

We use a modified version of Q-learning called extended Q-learning to learn the extended
action-value functions described previously. Our algorithm differs in a number of ways
from standard Q-learning: we keep track of the set of terminating states seen so far, and at
each timestep we update the extended Q-value function with respect to both the current
state and action, as well as all goals encountered so far. We also use the definition of the
extended reward function, and so if the agent encounters a terminal state of a different
task, it receives reward r̄MIN. The full pseudocode is shown in Figure 4.1.

Algorithm 1: Extended Q-learning

Input: Learning rate α, discount factor γ, exploration constant ε, lower-bound
extended reward r̄MIN

Initialise Q̄ : S × S ×A → R arbitrarily
G ← ∅
while Q̄ is not converged do

Initialise state s
while s is not terminal do

if G = ∅ then
Select random action a

else

a←

arg max
a′∈A

(
max
g∈G

Q̄(s, g, a′)

)
with probability 1− ε

a random action with probability ε

end
Choose a from s according to policy derived from Q̄
Take action a, observe r and s′

foreach g ∈ G do
if s′ is terminal then

if s′ 6= g then
δ ← r̄MIN − Q̄(s, g, a)

else
δ ← r − Q̄(s, g, a)

end

else
δ ← r + γmaxb Q̄(s′, g, b)− Q̄(s, g, a)

end
Q̄(s, g, a)← Q̄(s, g, a) + αδ

end
s← s′

end
G ← G ∪ {s}

end
return Q̄

Figure 4.1: A Q-learning algorithm for learning extended value functions. Note that
the greedy action selection step is equivalent to generalised policy improvement (Barreto
et al., 2017) over the set of extended value functions.

36 Chapter 4. Extended Value Functions

4.3.2 Function Approximation Case

Similarly to the modifications done on Q-learning to get extended Q-learning, we modify
deep Q-learning to get extended deep Q-learning. Our approach differs in that the neural
network—referred to as a Deep Q-Network (DQN) (Mnih et al., 2015)—takes a goal state
as additional input. Additionally, when a terminal state is encountered, it is added to the
collection of goals seen so far, and when learning updates occur, these goals are sampled
randomly from a goal buffer. The full pseudocode is shown in Figure 4.2.

Algorithm 2: Extended Deep Q-learning

Input: Maximum timesteps T , Target network updates C, Learning rate α,
discount factor γ, exploration constant ε, lower-bound extended reward
r̄MIN

Initialize network Q̄θ : S × S ×A → R with random weights θ
Initialize target network Q̄′θ′ : S × S ×A → R with random weights θ′

Initialize goal and replay buffers G ← ∅ and D ← ∅ respectively
t← 0
while t ≤ T do

Initialise state s
while s is not terminal do

if G = ∅ then
Select random action a

else
Select action a using ε-greedy generalised policy improvement on Q̄θ

end
Choose a from s according to policy derived from Q̄θ

Take action a, observe r and s′

D ← D ∪ {(s, a, r, s′)}
Sample mini-batch of goals G ′ ⊆ G and transitions D′ ⊆ D
foreach g, (s, a, r, s′) ∈ G ′ ×D′ do

if s′ is terminal then
r̄ ← r̄MIN if s′ 6= g else r
δ ← r̄ − Q̄′θ′(s, g, a)

else
δ ← r + γmaxb Q̄θ(s

′, g, b)− Q̄′θ′(s, g, a)
end
Perform a gradient descent step on δ2

end
Every C steps update target network θ′ ← θ
s← s′ ; t← t+ 1

end
G ← G ∪ {s}

end
return Q

Figure 4.2: A deep Q-learning algorithm for learning extended value functions with func-
tion approximation. The ε-greedy action selection using generalised policy improvement
is done similarly to Algorithm 1.

4.4. Experiments 37

4.4 Experiments

In this section we learn extended value functions for both deterministic shortest path tasks
and discounted goal-reaching tasks. We observe the proven properties from the previous
sections.

4.4.1 Tabular Case

Consider the simple grid world domain introduced in Example 3.4.1 where an agent may
be asked to go to any position on the xy-plane. The agent learns deterministic shortest
path tasks and discounted goal-reaching tasks, where

� Deterministic shortest path tasks: The internal rewards (rewards for all non-terminal
states) are −0.1 and the goal rewards (rewards on the absorbing set) range from
−0.1 to 2.

� Discounted goal-reaching tasks: The internal rewards (rewards for all non-terminal
states) are 0 and the goal rewards (rewards on the absorbing set) range from 0 to
2. The discount factor used is γ = 0.95.

We train an agent on the task ML, in which the agent must learn to navigate to the left
of the xy-plane. Figures 4.3(a) and 4.4(a) shows the learned EVFs for both deterministic
shortest path and discounted goal reaching cases respectively. The figures are generated
by plotting the value functions for each goal state, and displaying it at the position of
the respective goal states. We observe that the learned EVFs do indeed encode how to
achieve multiple goals in the environment. Notice how for the goal positions next to the
right wall (the rightmost column of the plot), the EVF for the discounted goal reaching
task has zero values everywhere since the agent receives no reward at those goals.

(a) Extended state-
value function obtained
by acting greedily over
actions on extended
action-value function.

(b) Action-value func-
tion obtained by acting
greedily over goals on
extended action-value
function.

(c) State-value function
and policy obtained
by acting greedily over
action-value function.

Figure 4.3: Learned EVF for the deterministic shortest path task of going to the left of
the gridworld. (a) Each square shows the value of all internal states with respect to the
goal state at that position. (b) Each square is divided into 5 parts representing the values
for each action at that position. The circles show the value of choosing the stay action.
(c) Arrows represent the optimal action in a given state.

Note how we also recover the optimal action-value function, state-value function, and
policy for both types of goal oriented tasks. This is shown for the deterministic shortest

38 Chapter 4. Extended Value Functions

(a) Extended state-
value function obtained
by acting greedily over
actions on extended
action-value function.

(b) Action-value func-
tion obtained by acting
greedily over goals on
extended action-value
function.

(c) State-value function
and policy obtained
by acting greedily over
action-value function.

Figure 4.4: Learned EVF for the discounted goal reaching task of going to the left of the
gridworld. (a) Each square shows the value of all internal states with respect to the goal
state at that position. (b) Each square is divided into 5 parts representing the values for
each action at that position. The circles show the value of choosing the stay action. (c)
Arrows represent the optimal action in a given state.

path and discounted goal reaching cases in Figures 4.3(b)-(c) and 4.4(b)-(c) respectively.
It demonstrates the results proven in Section 4.2.

By learning extended value functions, an agent learns a massive number of diverse
solutions to a single task. However, the upfront cost of learning is likely to be higher
since we must learn not only the optimal Q function, but the optimal Q function with
respect to every goal. We investigate how the sample complexity of learning extended
value functions and learning standard value functions scales with the number of tasks
(Figure 4.5). We compare extended Q-learning to Q-learning, since extended Q-learning
is the method we propose for learning extended value functions. We observe that the
number of samples required to learn the extended value function is greater than learning
a standard value function. However, both scale linearly and differ only by a constant
factor. We will see in the next chapter how we can leverage the extended value functions
to improve transfer in a multi-task setting, which amortises the upfront cost over multiple
tasks.

4.4.2 Function Approximation Case

Finally, we demonstrate that our modified learning method can also be used to learn high-
dimensional domains where function approximation is required.3 In our experiments, we
use a DQN with the following architecture:

1. Three convolutional layers:

(a) Layer 1 has 6 input channels, 32 output channels, a kernel size of 8 and a stride
of 4.

(b) Layer 2 has 32 input channels, 64 output channels, a kernel size of 4 and a
stride of 2.

(c) Layer 3 has 64 input channels, 64 output channels, a kernel size of 3 and a
stride of 1.

3See Section 4.3.2 for a description of the learning method.

4.5. Conclusion 39

0 2 4 6 8 10 12 14 16
Number of tasks

0

1

2

3

4

5

C
um

ul
at

iv
e

ti
m

es
te

ps
to

co
nv

er
ge

×105

Q̄

Q

Figure 4.5: Cumulative number of samples required to learn optimal extended and regular
value functions. Error bars represent standard deviations over 100 runs.

2. Two fully-connected linear layers:

(a) Layer 1 has input size 3136 and output size 512 and uses a ReLU activation
function.

(b) Layer 2 has input size 512 and output size 5 with no activation function.

We used the ADAM optimiser with mini-batch size 32 and a learning rate of 10−4.
We trained every 4 timesteps and update the target Q-network every 1000 steps. Finally,
we used ε-greedy exploration, annealing ε to 0.01 over 100000 timesteps.

We use the same video game environment as Van Niekerk et al. (2019), where an agent
must navigate a 2D world and collect objects of different shapes and colours. The state
space is an 84× 84 RGB image, and the agent is able to move in any of the four cardinal
directions. The agent also possesses a pick-up action, which allows it to collect an object
when standing on top of it. There are two shapes (squares and circles) and three colours
(blue, beige and purple) for a total of six unique objects. The position of the agent is
randomised at the start of each episode.

We train the agent on the blue task, in which it needs to optimally to navigate to
blue objects and collect them. Figures 4.6 and 4.7 shows the learned EVFs and the
result of maximising over goals for both discounted and deterministic shortest path cases
respectively. To generate the EVFs, we place the agent at every location and compute
the maximum output of the network over all actions for each goal. We then interpolate
between the points to smooth the graph. Any error in the visualisation is due to the use
of non-linear function approximation.

4.5 Conclusion

For an agent to be able to solve new tasks optimally in an environment without extra
learning, it needs to have gained sufficient information from its experience when learning
to solve previous tasks. Its objective during learning hence shouldn’t just be how to

40 Chapter 4. Extended Value Functions

(a) Extended state-value
function obtained by max-
imizing over actions on
extended action-value
function.

(b) Value function obtained
by maximizing over goals on
extended state-value func-
tion.

(c) Sample trajectories of
agent solving the task.

Figure 4.6: Learned EVF for the deterministic shortest path task of collecting blue objects
in the video game domain. The EVF shows the value function with respect to each goal
plotted on the same axis.

(a) Extended state-value
function obtained by max-
imizing over actions on
extended action-value
function.

(b) Value function obtained
by maximizing over goals on
extended state-value func-
tion.

(c) Sample trajectories of
agent solving the task.

Figure 4.7: Learned EVF for the discounted goal reaching task of collecting blue objects
in the video game domain. The EVF shows the value function with respect to each goal
plotted on the same axis.

optimally solve the current task, but how to gain as much knowledge as possible from its
experience while doing so. We introduced a new type of value function that captures this
idea. As the agent acts in the environment it achieves outcomes that are good or bad
to various degree. Rather than focusing on just the best outcomes and how to achieve
them, it learns how to achieve any possible outcome. After training it knows about the
various possible outcomes of the task and what behaviours lead to them. This is similar
to the idea of mastery proposed by Veeriah et al. (2018). When trying to solve the task
optimally, it is a simple matter for the agent to choose the best outcome. This is a much
richer knowledge representation than standard value functions which learn just how to
achieve the best outcomes. An agent may now leverage this rich knowledge about learned
tasks to solve new tasks optimally. We investigate this in the next chapter.

Chapter 5

Composing Extended Value
Functions

5.1 Introduction

In the previous chapters we formalised the logical composition of tasks, showed how
standard value functions are insufficient to solve them zero-shot, and introduced EVFs
as a richer type of value function that may encode sufficient information about learned
tasks to solve new ones zero-shot. In this chapter we formally show that EVFs are indeed
sufficient to solve logical composition of tasks zero-shot. We do this by first formalising
their composition under the relevant algebraic structures, just as was done with task
compositions. This gives us mathematical tools which can used to formally show zero-shot
composition and further explore some additional properties of the established structures.

Hence the main contributions of this chapter are as follows:

� We introduce EVF Lattices, which gives a mathematical structure for doing arbi-
trary disjunctions and conjunctions of EVFs. It also gives a graphical representation
for the space of EVFs.

� We define the negation of EVFs, and hence establish their logical compositions.
This gives the ability to do arbitrary negations, disjunctions and conjunctions of
EVFs.

� We prove zero-shot composition of tasks with dense goal rewards. This guarantees
a compositional explosion of skills.

� We prove zero-shot composition of tasks with sparse rewards. This combined with
the notion of base tasks guarantees a super-exponential explosion of skills.

� We prove that for tasks with sparse rewards, their EVF algebra is isomorphic to
both their task algebra and the power set algebra of their goal space. It shows that
given a set of desired goals, the specific isomorphism we consider can generate the
EVF of the related task from just two EVFs. That is after learning just two EVFs,
any task with sparse rewards can theoretically be solved without extra learning,
regardless of the size of the task space.

� We show experimentally that zero-shot composition also holds in high dimensional
environments that require function approximation.

41

42 Chapter 5. Composing Extended Value Functions

� We show experimentally that zero-shot composition still holds even when the as-
sumptions made for theoretical guarantees are relaxed.

This chapter is structured as follows. Section 5.2 formalises logical composition of
EVFs under relevant algebraic structures. This is used to show zero-shot composition.
Section 5.3 shows the isomorphism between tasks, EVFs and power set algebras. This
is used to show how EVFs can be generated from two constant EVFs without extra
learning. Section 5.4 demonstrates zero-shot composition in a video game domain. Finally,
Section 5.5 investigates the effect of relaxing the assumptions made on the class of MDPs.
It also investigates the trade off between the time it takes to learn EVFs versus the
compositional explosion of skills obtained.

5.2 Algebra of EVFs

In this section we establish the logical composition of EVFs and show that this leads to
zero-shot composition.

5.2.1 EVF Lattice

Similarly to how we formalised disjunction and conjunction of tasks using the lattice
algebraic structure, we also use it to formalise the disjunction and conjunction of EVFs.
Since EVFs are real valued functions, a natural partial order on them is pointwise ≤ (the
usual ≤ on R). We state the resulting poset formally as follows:

Proposition 5.2.1. Let Q̄∗ be the set of optimal Q̄-value functions for tasks inM. Then
(Q̄∗,≤) is a partially ordered set with the relation ≤ given by

Q̄∗1 ≤ Q̄∗2 if Q̄∗1(s, g, a) ≤ Q̄∗2(s, g, a) for all (s, g, a) ∈ S × G ×A.

Proof. Follows from the usual ≤ relation on R.

While in general a partial order does not necessarily induce a lattice, it does for the
poset of EVFs in which we are interested. This follows from the partial order on the set
of EVFs given by the pointwise ≤. Since the EVFs are real valued, every set of points
has a least upper bound (the max) and a greatest lower bound (the min). We show that
the poset of EVFs of deterministic shortest path tasks and discounted goal reaching tasks
have a supremum and an infimum for any pair of elements.

Proposition 5.2.2. Let M be a set of deterministic shortest path tasks or a set of dis-
counted goal reaching tasks. Let Q̄∗ be the set of optimal Q̄-value functions for tasks in
M. Then for all Q̄∗1, Q̄

∗
2 ∈ Q̄∗,

(i): sup{Q̄∗1, Q̄∗2} = Q̄∗sup ∈ Q̄∗, where Q̄∗sup : (s, g, a) 7→ sup{Q̄∗1(s, g, a), Q̄∗2(s, g, a)}.

(ii): inf{Q̄∗1, Q̄∗2} = Q̄∗inf ∈ Q̄∗, where Q̄∗inf : (s, g, a) 7→ inf{Q̄∗1(s, g, a), Q̄∗2(s, g, a)}.

Proof. Let M1,M2 ∈M. Then for all (s, g, a) in S × G ×A,

5.2. Algebra of EVFs 43

(i): If M is a set of deterministic shortest path tasks, then

Q̄∗sup(s, g, a) = sup{Q̄∗M1
(s, g, a), Q̄∗M2

(s, g, a)}
= sup{G∗s:g,a + r̄M1(s

′, g, a′), G∗s:g,a + r̄M2(s
′, g, a′′)} (Corollary 4.2.2.1)

= G∗s:g,a + sup{r̄M1(s
′, g, a′), r̄M2(s

′, g, a′′)}
= G∗s:g,a + r̄M1∨M2(s

′, g, a′)

= Q̄∗M1∨M2
(s, g, a)

=⇒ Q̄∗sup = Q̄∗M1∨M2
∈ Q̄∗.

If M is a set of discounted goal reaching tasks, then

Q̄∗sup(s, g, a) = sup{Q̄∗M1
(s, g, a), Q̄∗M2

(s, g, a)}
= sup{γT ∗s:g,arM1(g, a

′), γT
∗
s:g,arM2(g, a

′)} (Corollary 4.2.3.1)

= γT
∗
s:g,a sup{rM1(g, a

′), rM2(g, a
′)} (since γ is non-negative)

= γT
∗
s:g,arM1∨M2(g, a

′)

= Q̄∗M1∨M2
(s, g, a)

=⇒ Q̄∗sup = Q̄∗M1∨M2
∈ Q̄∗.

Since Q̄∗sup is in Q̄∗, it follows from the pointwise ≤ on R that it is the lowest upper
bound of Q̄∗1 and Q̄∗2.

(ii): Follows similarly to (i).

This means that the set of EVFs Q̄∗ of deterministic shortest path tasks or discounted
goal reaching tasks forms a lattice (Q̄∗,∨,∧) with ∨ and ∧ given by Q̄∗1∨Q̄∗2 := sup{Q̄∗1, Q̄∗2}
and Q̄∗1 ∧ Q̄∗2 := inf{Q̄∗1, Q̄∗2} respectively. We define these formally as follows:

Definition 5.2.1. Let M be a set of deterministic shortest path tasks or a set of dis-
counted goal reaching tasks. Let Q̄∗ be the set of optimal Q̄-value functions for tasks in
M. The join and meet operators on Q̄∗ are respectively given by

∨ : Q̄∗ × Q̄∗ → Q̄∗
(Q̄∗1, Q̄

∗
2) 7→ Q̄∗1 ∨ Q̄∗2, where Q̄∗1 ∨ Q̄∗2 : S × G ×A → R

(s, g, a) 7→ sup{Q̄∗1(s, g, a), Q̄∗2(s, g, a)},

∧ : Q̄∗ × Q̄∗ → Q̄∗
(Q̄∗1, Q̄

∗
2) 7→ Q̄∗1 ∧ Q̄∗2, where Q̄∗1 ∧ Q̄∗2 : S × G ×A → R

(s, g, a) 7→ inf{Q̄∗1(s, g, a), Q̄∗2(s, g, a)}.

In fact (Q̄∗,∨,∧) forms a distributive lattice. We state this as follows:

Proposition 5.2.3. Let M be a set of deterministic shortest path tasks or a set of dis-
counted goal-reaching tasks. Let Q̄∗ be the set of optimal Q̄-value functions for tasks in
M. Then (Q̄∗,∨,∧) is a distributive lattice.

44 Chapter 5. Composing Extended Value Functions

Proof. Follows from the distributivity of inf and sup.

Given a non-empty finite set O of lower bounded subsets of EVFs N ⊂ Q̄∗, the EVF
lattice (Q̄∗,∨,∧) gives us the principled way of specifying the disjunction of conjunctions,∨

N∈O

(∧
N∈N

N

)
(s, g, a) = sup

N∈O

(
inf
N∈N

Q̄∗N(s, g, a)

)
.

Similarly, given a non-empty finite set O of upper bounded subsets of EVFs N ⊂ Q̄∗,
the conjunction of disjunctions is given by,∧

N∈O

(∨
N∈N

N

)
(s, g, a) = inf

N∈O

(
sup
N∈N

Q̄∗N(s, g, a)

)
.

If Q̄∗ is bounded, then it forms a complete distributive lattice. This means that the
above will hold true for any non-empty subset of Q̄∗.

Having established a lattice algebra over tasks and extended value functions, we show
that there exists an equivalence between the two. As a result, if we can write down a task
under the lattice algebra, we can immediately write down the optimal value function for
the task.

Theorem 5.2.1. LetM be a set of deterministic shortest path tasks or a set of discounted
goal-reaching tasks. Let Q̄∗ be the set of optimal Q̄-value functions for tasks in M. Let
F :M→ Q̄∗ be any map from M to Q̄∗ such that F(M) = Q̄∗M for all M in M. Then
F is a homomorphism between the task lattice (M,∨,∧) and the EVFs lattice (Q̄∗,∨,∧).

Proof. Follows from the proofs of Propositions 5.2.2, which give

Q̄∗M1
∨ Q̄∗M2

= sup{Q̄∗M1
, Q̄∗M2

} = Q̄∗M1∨M2

and
Q̄∗M1

∧ Q̄∗M2
= inf{Q̄∗M1

, Q̄∗M2
} = Q̄∗M1∧M2

∀M1,M2 ∈M.

Experiment 5.2.1. Consider the simple grid world domain introduced in Example 3.4.1
where an agent may be asked to go to any position on the xy-plane. The agent learns
deterministic shortest path and discounted goal-reaching tasks, where

� Deterministic shortest path tasks: The internal rewards are −0.1 and the goal re-
wards range from −0.1 to 2.

� Discounted goal-reaching tasks: The internal rewards (rewards for all non-terminal
states) are 0 and the goal rewards (rewards on the absorbing set) range from 0 to 2.
The discounting used is γ = 0.95.

We train an agent on the tasks ML and MD, in which the agent must learn to navigate
to the left and bottom of the xy-plane respectively. Figure 5.1 shows the learned EVFs Q̄∗L
and Q̄∗D together with their disjunction and conjunction for the deterministic shortest path
case. Similarly Figure 5.2 shows these for the discounted goal reaching case. For each EVF
figure, each plot shows the value function with respect to that goal position (the position
of the plot). Finally, notice how the composition of EVFs exhibit the same semantics as
those of rewards. This highlights the homomorphism proven in Theorem 5.2.1, showing
the structural similarity between the task space and value function space.

5.2. Algebra of EVFs 45

(a) Q̄∗L (b) Q̄∗D (c) Q̄∗L ∨ Q̄∗D (d) Q̄∗L ∧ Q̄∗D
Figure 5.1: Showing the disjunction and conjunction of EVFs learned from deterministic
shortest path tasks in gridworld domain. Figures (a)-(b) shows the EVFs for the left
and down tasks. (c) shows the EVF of their disjunction. (d) shows the EVF of their
conjunction.

(a) Q̄∗L (b) Q̄∗D (c) Q̄∗L ∨ Q̄∗D (d) Q̄∗L ∧ Q̄∗D
Figure 5.2: Showing the disjunction and conjunction of EVFs learned from discounted
tasks in gridworld domain. Figures (a)-(b) shows the EVFs for the left and down tasks.
(c) shows the EVF of their disjunction. (d) shows the EVF of their conjunction.

5.2.2 De Morgan EVF Algebra

Having formalised the meaning of disjunction and conjunction of EVFs, we next formalise
the meaning of the negation of a EVFs. A De Morgan algebra enables us to define it by
adding minimal required properties that encapsulates the desired semantics of a negation.
We define the negation of an EVF as follows:

Definition 5.2.2. Let Q̄∗ be the set of optimal Q̄-value functions for tasks in a bounded
set of tasks M. Define Q̄∗INF , Q̄

∗
SUP ∈ Q̄∗ to be the optimal Q̄-functions for the tasks

MINF ,MSUP ∈M. Then the negation operator is given by,

¬ : Q̄∗ → Q̄∗
Q̄∗ 7→ ¬Q̄∗, where ¬Q̄∗ : S × G ×A → R

(s, g, a) 7→
(
Q̄∗SUP (s, g, a) + Q̄∗INF (s, g, a)

)
− Q̄∗(s, g, a).

We show that the negation of Q̄∗ ∈ Q̄∗ is indeed in Q̄∗ for the EVFs we are interested
in.

46 Chapter 5. Composing Extended Value Functions

Proposition 5.2.4. Let M be a set of deterministic shortest path tasks or a set of dis-
counted goal-reaching tasks satisfying Assumption 3.4.1. Let Q̄∗ be the set of optimal
Q̄-value functions for tasks in M. Then ¬Q̄∗ ∈ Q̄∗ for all Q̄∗ ∈ Q̄∗.
Proof. Let M ∈M. Then for all (s, g, a) in S × G ×A,

if M is a set of deterministic shortest path tasks, then

¬Q̄∗M(s, g, a) =
[
Q̄∗SUP (s, g, a) + Q̄∗INF (s, g, a)

]
− Q̄∗M(s, g, a)

=
[
(G∗s:g,a + r̄MSUP

(s′, g, a′)) + (G∗s:g,a + r̄MINF
(s′, g, a′))

]
− (G∗s:g,a + r̄M(s′, g, a′)) (Corollary 4.2.2.1)

= G∗s:g,a + (r̄MSUP
(s′, g, a′) + r̄MINF

(s′, g, a′))− r̄M(s′, g, a′)

= G∗s:g,a + r̄¬M(s′, g, a′)

= Q̄∗¬M(s, g, a).

if M is a set of discounted goal-reaching tasks, then

¬Q̄∗M(s, g, a) =
[
Q̄∗SUP (s, g, a) + Q̄∗INF (s, g, a)

]
− Q̄∗M(s, g, a)

=
[
(γT

∗
s:g,arMSUP

(g, a′)) + (γT
∗
s:g,arMINF

(g, a′))
]

− (γT
∗
s:g,arM(g, a′)) (Corollary 4.2.3.1)

= γT
∗
s:g,a [(rMSUP

(g, a′) + rMINF
(g, a′))− rM(g, a′)]

= γT
∗
s:g,ar¬M(g, a′)

= Q̄∗¬M(s, g, a).

Hence ¬Q̄∗M = Q̄∗¬M ∈ Q̄∗.

We now formalize the interaction of the negation of EVFs with the conjunction and
disjunction of EVFs as follows:

Proposition 5.2.5. Let M be a set of deterministic shortest path tasks or discounted
goal-reaching tasks satisfying Assumption 3.4.1. Let Q̄∗ be the set of optimal Q̄-value
functions for tasks in M. Then (Q̄∗,∨,∧,¬, Q̄∗SUP , Q̄∗INF) is a De Morgan algebra.

Proof. Let Q̄∗M1
, Q̄∗M2

∈ Q̄∗ be the optimal Q̄-value functions for tasks M1,M2 ∈M with
reward functions rM1 and rM2 . We show that ¬,∨,∧ satisfy the De Morgan algebra
properties (i) – (vii).

(i)–(v): These follow from the properties of inf and sup.

(vi): This follows from the bounds Q̄∗SUP , Q̄
∗
INF ∈ Q̄∗ which are guaranteed to exist

due to Assumption 3.4.1.

(vii): The first condition easily follows from the definition of ¬. For the second condi-
tion, we have that for all (s, g, a) in S × G ×A,

¬(Q̄∗M1
∨ Q̄∗M2

)(s, g, a) = (Q̄∗SUP (s, g, a) + Q̄∗INF (s, g, a))− sup
M∈{M1,M2}

Q̄∗M(s, g, a)

= (Q̄∗SUP (s, g, a) + Q̄∗INF (s, g, a)) + inf
M∈{M1,M2}

−Q̄∗M(s, g, a)

= inf
M∈{M1,M2}

(Q̄∗SUP (s, g, a) + Q̄∗INF (s, g, a))− Q̄∗M(s, g, a)

= (¬Q̄∗M1
∧ ¬Q̄∗M2

)(s, g, a).

5.2. Algebra of EVFs 47

Having established a De Morgan algebra over tasks and extended value functions, we
show that there exists an equivalence between the two. As a result, if we can write down
a task under the De Morgan algebra, we can immediately write down the optimal value
function for the task.

Theorem 5.2.2. LetM be a set of deterministic shortest path tasks or a set of discounted
goal-reaching tasks satisfying Assumption 3.4.1. Let Q̄∗ be the set of optimal Q̄-value
functions for tasks inM. Let F :M→ Q̄∗ be any map fromM to Q̄∗ such that F(M) =
Q̄∗M for all M in M. Then F is a homomorphism between the De Morgan task algebra
(M,∨,∧,¬,MSUP ,MINF) and the De Morgan EVFs algebra (Q̄∗,∨,∧,¬, Q̄∗SUP , Q̄∗INF).

Proof. Follows from the proof of Proposition 5.2.4 and the homomorphism between the
task and EVF lattices.

Experiment 5.2.2. Consider the simple grid world domain introduced in Example 3.4.1
where an agent may be asked to go to any position on the xy-plane. We use the EVFs
learned in Experiment 5.2.1 for the tasks ML and MD. Figures 5.3 and 5.4 shows the
values of the EVFs specified by their negation, ¬Q̄∗L = Q̄∗R and ¬Q̄∗D = Q̄∗T, in which an
agent determines how to navigate to the right and top of the xy-plane respectively. This
shows that the negation defined above does indeed have the expected semantics. The figure
also shows that arbitrary disjunction, conjunction, and negation of EVFs also produces
EVFs with the desired semantics.

(a) ¬Q̄∗L (b) ¬Q̄∗D (c) Q̄∗L
−∨ Q̄∗D (d) Q̄∗L Y Q̄∗D (e)

(Q̄∗L∨¬Q̄
∗
L)

∨
(Q̄∗D∨¬Q̄

∗
D)

(f)
(Q̄∗L∧¬Q̄

∗
L)

∧
(Q̄∗D∧¬Q̄

∗
D)

Figure 5.3: Showing the composition of EVFs learned from deterministic shortest path
tasks in gridworld domain. Figures (a)-(b) shows the values for the right and up EVFs,
specified by the negation of the left and down EVFs respectively. (c)-(f) shows the values
of the composed EVFs.

5.2.3 Boolean EVF Algebra

While the De Morgan EVF algebra allows us to specify arbitrary disjunction, conjunction,
and negation of EVFs, it does not in general represent the full desired properties of logics.
In particular the EVF compositions does not always satisfy the laws of the excluded
middle and of non contradiction. This is because the De Morgan EVF algebra allows for

48 Chapter 5. Composing Extended Value Functions

(a) ¬Q̄∗L (b) ¬Q̄∗D (c) Q̄∗L
−∨ Q̄∗D (d) Q̄∗L Y Q̄∗D (e)

(Q̄∗L∨¬Q̄
∗
L)

∨
(Q̄∗D∨¬Q̄

∗
D)

(f)
(Q̄∗L∧¬Q̄

∗
L)

∧
(Q̄∗D∧¬Q̄

∗
D)

Figure 5.4: Showing the composition of EVFs learned from discounted tasks in gridworld
domain. Figures (a)-(b) shows the values for the right and up EVFs, specified by the
negation of the left and down EVFs respectively. (c)-(f) shows the values of the composed
EVFs.

EVFs obtained from tasks with dense rewards in the goal space which in turn violates
these assumptions in general. In this section we show that by restricting the EVFs to
those of Boolean tasks, we obtain the full logics on EVFs.

Proposition 5.2.6. Let M be a set of deterministic shortest path tasks or a set of dis-
counted goal-reaching tasks satisfying Assumption 3.4.2. Let Q̄∗ be the set of optimal
Q̄-value functions for tasks in M. Then (Q̄∗,∨,∧,¬, Q̄∗SUP , Q̄∗INF) is a Boolean EVF
algebra.

Proof. Let Q̄∗M1
, Q̄∗M2

∈ Q̄∗ be the optimal Q̄-value functions for tasks M1,M2 ∈M with
reward functions rM1 and rM2 . We show that ¬,∨,∧ satisfy the Boolean properties (i) –
(vii).

(i)–(vi): These follow from the De Morgan EVF algebra since Q̄∗ satisfies its assumptions.

(vii): For all (s, g, a) in S × G ×A,

if M is a set of deterministic shortest path tasks, then

(Q̄∗M1
∧ ¬Q̄∗M1

)(s, g, a)

= inf{Q̄∗M1
(s, g, a), (Q̄∗SUP (s, g, a)− Q̄∗INF (s, g, a))− Q̄∗M1

(s, g, a)}
= G∗s:g,a + inf{r̄M1(s

′, g, a′), (r̄MSUP
(s′, g, a′) + r̄MINF

(s′, g, a′))− r̄M1(s
′, g, a′)}

= G∗s:g,a + r̄MINF
(s′, g, a′)

= Q̄∗INF (s, g, a).

If M is a set of discounted goal-reaching tasks, then

(Q̄∗M1
∧ ¬Q̄∗M1

)(s, g, a)

= inf{Q̄∗M1
(s, g, a), (Q̄∗SUP (s, g, a)− Q̄∗INF (s, g, a))− Q̄∗M1

(s, g, a)}
= γT

∗
s:g,a inf{rM1(g, a

′), (rMSUP
(g, a′) + rMINF

(g, a′))− rM1(g, a
′)}

= γT
∗
s:g,arMINF

(g, a′)

= Q̄∗INF (s, g, a).

Similarly, Q̄∗M1
∨ ¬Q̄∗M1

= Q̄∗SUP .

5.2. Algebra of EVFs 49

Having established a Boolean algebra over tasks and extended value functions, we
show that they are homomorphic. As a result, if we can write down a task under the
Boolean algebra, we can immediately write down the optimal value function for the task.

Theorem 5.2.3. LetM be a set of deterministic shortest path tasks or a set of discounted
goal-reaching tasks satisfying Assumption 3.4.2. Let Q̄∗ be the set of optimal Q̄-value
functions for tasks inM. Let F :M→ Q̄∗ be any map fromM to Q̄∗ such that F(M) =
Q̄∗M for all M in M. Then F is a homomorphism between the Boolean task algebra
(M,∨,∧,¬,MSUP ,MINF) and the Boolean EVFs algebra (Q̄∗,∨,∧,¬, Q̄∗SUP , Q̄∗INF).

Proof. Follows from the homomorphism between the De Morgan task and EVF algebras.

Combining Theorem 5.2.3 with the notion of base tasks and super-exponential task
specifications obtained in Section 3.5, we obtain the much desired super-exponential ex-
plosion of skills (Figure 5.5).

2 4 6 8 10
Number of learned tasks

100

103

106

109

1012

1015

1018

N
um

b
er

of
so

lv
ab

le
ta

sk
s

Boolean task algebra

Disjunction only

No transfer

(a) Number of tasks that can be solved
as a function of the number of existing
tasks solved. Results are plotted on a
log-scale.

2 4 6 8 10
Number of terminal states

2

4

6

8

10

N
um

b
er

of
ne

ce
ss

ar
y

ba
se

ta
sk

s Boolean task algebra

Disjunction only

(b) Number of base tasks that need to
be solved to span all tasks as a function
of number of terminal states. Results
are plotted on a log-scale.

Figure 5.5: Results in comparison to the disjunctive composition of Van Niekerk et al.
(2019). (a) The extended value functions allow us to solve exponentially more tasks than
the disjunctive approach without further learning. (b) With extended value functions the
number of base tasks required to solve all tasks is logarithmic in the number of achievable
goals.

Experiment 5.2.3. Consider the simple grid world domain introduced in Example 3.4.3
where an agent may be asked to go to any position on the xy-plane and the goal rewards
are restricted to rMIN or rMAX. The agent learns tasks specified as deterministic shortest
paths and discounted goal reaching, where

� Deterministic shortest path tasks: The internal rewards are −0.1 and the goal re-
wards are −0.1 for undesired terminal states and 2 for desired ones.

� Discounted goal-reaching tasks: The internal rewards are 0 and the goal rewards
are 0 for undesired terminal states and 2 for desired ones. The discounting used is
γ = 0.95.

50 Chapter 5. Composing Extended Value Functions

We train an agent on the tasks ML and MD, giving us their respective EVFs Q̄∗L and
Q̄∗D. We are now able to do the zero-shot composition of any logical combination of ML

and MD. This is demonstrated in Figures 5.6 and 5.7. As usual we observe that the EVFs
have the same structure as the rewards in the absorbing set, with the EVFs of deterministic
shortest path tasks learning how to achieve any absorbing state while that of discounted
goal-reaching tasks learn to achieve nothing for absorbing states with zero reward. Notice
how for the lower bound EVF (the result of meaningless composition), the optimal policy
for the deterministic shortest path is to achieve any terminal state (Figure 5.6(f)). This
is because all the terminal states are equally undesirable (they have the lowest values).
In contrast we observe that the EVF for meaningless compositions of discounted goal-
reaching tasks is zero everywhere since the agent is never rewarded for any action in any
state (Figure 5.7(f)). Hence the agent learns nothing (good or bad), and as a result an
optimal policy here is to achieve nothing.

(a) Q̄∗L (b) Q̄∗D (c) Q̄∗L ∨ Q̄∗D (d) Q̄∗L ∧ Q̄∗D (e) ¬Q̄∗L (f)
(Q̄∗L∧¬Q̄

∗
L)

∧
(Q̄∗D∧¬Q̄

∗
D)

Figure 5.6: Showing composition of Boolean EVFs in gridworld domain. Figures (a)-(b)
shows the Boolean goal rewards for the left and down tasks, (c)-(f) shows the rewards of
the composed tasks.

(a) Q̄∗L (b) Q̄∗D (c) Q̄∗L ∨ Q̄∗D (d) Q̄∗L ∧ Q̄∗D (e) ¬Q̄∗L (f)
(Q̄∗L∧¬Q̄

∗
L)

∧
(Q̄∗D∧¬Q̄

∗
D)

Figure 5.7: Showing composition of Boolean tasks in gridworld domain. Figures (a)-(b)
shows the Boolean goal rewards for the left and down tasks, (c)-(f) shows the rewards of
the composed tasks.

5.3. Between EVF and Power Set Boolean Algebras 51

5.3 Between EVF and Power Set Boolean Algebras

In the previous section we showed that the algebraic structures of tasks and EVFs are
homomorphic. As a result any task that is specified according to a task algebra can
be immediately solved according to the EVF algebra. In this section we show that for
the case of a Boolean EVF algebra, we can in fact immediately construct optimal EVFs
directly from a set of desired goals. We do this by showing that the EVF and power
set Boolean algebras are in fact isomorphic. Consider the mapping F between the set of
EVFs Q̄∗ and the power-set P(G), given by

F : P(G)→ Q̄∗
H 7→ Q̄∗H , where Q̄∗H : S × G ×A → R

(s, g, a) 7→
{
Q̄∗SUP (s, g, a), if g ∈ H
Q̄∗INF (s, g, a), otherwise.

F is clearly an isomorphism since each g ∈ H defines and can be defined by each
g′ ∈ G that gives Q̄∗H(s, g′, a) = Q̄∗SUP (s, g′, a) ∀ (s, a) ∈ S × A. The isomorphism
between a Boolean EVF algebra and the power-set Boolean algebra gives us the following
important result.

Theorem 5.3.1. LetM be a set of deterministic shortest path tasks or a set of discounted
goal-reaching tasks satisfying Assumption 3.4.2. Let Q̄∗ be the set of optimal Q̄-value
functions for tasks in M. Then the Boolean algebra on Q̄∗ is isomorphic to the Boolean
algebra on M.

Proof. This follows from the isomorphism between Q̄∗ and P(G), and that between P(G)
and M.

This illustrates how the base knowledge an agent needs to act optimally in an en-
vironment for any future task can in fact be constructed rather than learned. All that
is required to be learned are two EVFs, namely the lower bound EVF Q̄∗INF and upper
bound EVF Q̄∗SUP . Note how this is true for any cardinality of G. If G is finite then this
can easily be done with a Boolean table.

Experiment 5.3.1. Consider a Four Rooms domain described in Section 3.5, where an
agent must navigate in a grid world to particular rooms. The agent learns tasks specified
as deterministic shortest paths and discounted goal reaching. The rewards for both cases
are the same as in Experiment 5.2.3.

Just as in the Boolean task algebra, we can select a minimal set of base EVFs (generator
EVFs) by assigning each goal a binary number, and then using the columns of the table
to generate the EVFs. Since the absorbing set is finite, we can do this assignment using
a Boolean table. Similarly to Section 3.5, we label each goal by defining a well order over
G. The number of base EVFs induced are then d| log2 G|e = 2 since |G| = 4. Table 5.1
illustrates how different well orders on G leads to different choices of base EVFs.

Consider the well order on G given by Table 3.2(b). The base EVFs induced are Q̄∗L
and Q̄∗T which are the EVFs of the tasks ML and MT respectively.

Figures 5.8 and 5.9 illustrates these EVFs for the two classes of MDPs and some of
their logical compositions. Note that the resulting optimal value function can attain a goal
not explicitly represented by the base tasks, namely the bottom-right goal for the negation.
Figures 5.10 and 5.11 shows the Boolean table and Hasse diagram for all the 16 EVFs
generated by them, which spans their respective value spaces.

52 Chapter 5. Composing Extended Value Functions

Goals Q̄∗D Q̄∗R

top-left 0 0
top-right 0 1
bottom-left 1 0
bottom-right 1 1

(a) Goals labled by the well order ≤
given by: bottom− right ≤ bottom
− left ≤ top− right ≤ top− left

Goals Q̄∗T Q̄∗L

bottom-right 0 0
bottom-left 0 1
top-right 1 0
top-left 1 1

(b) Goals labled by the well order ≤
given by: top− left ≤ top− right
≤ bottom− left ≤ bottom− right

Table 5.1: Base EVFs induced by various well orders on G. Each column represents a
base EVF, where 0 or 1 for goal g on EVF Q̄∗ means respectively EVF of Q̄∗(s, g, a) =
Q̄∗SUP (s, g, a) or Q̄∗(s, g, a) = Q̄∗INF (s, g, a) ∀(s, a) ∈ S ×A.

(a) Q̄∗L (b) Q̄∗T (c) Q̄∗L ∨ Q̄∗T (d) Q̄∗L ∧ Q̄∗T (e) ¬Q̄∗L (f) Q̄∗L Y Q̄∗T

Figure 5.8: An example of Boolean algebraic composition using generated extended value
functions of base deterministic shortest path tasks. Arrows represent the optimal action
in a given state. (a–b) The generated optimal extended value functions for the base
tasks. (c) Zero-shot disjunctive composition. (d) Zero-shot conjunctive composition. (e)
Zero-shot negation. (f) Combining operators to model exclusive-or composition.

(a) Q̄∗L (b) Q̄∗T (c) Q̄∗L ∨ Q̄∗T (d) Q̄∗L ∧ Q̄∗T (e) ¬Q̄∗L (f) Q̄∗L Y Q̄∗T

Figure 5.9: An example of Boolean algebraic composition using generated extended value
functions of base discounted goal-reaching tasks. Arrows represent the optimal action in a
given state. (a–b) The generated optimal extended value functions for the base tasks. (c)
Zero-shot disjunctive composition. (d) Zero-shot conjunctive composition. (e) Zero-shot
negation. (f) Combining operators to model exclusive-or composition.

5.3. Between EVF and Power Set Boolean Algebras 53

Well Order
on 4 goal states

Q*𝐿

Q*𝑇

Q*𝐼𝑁𝐹

Q*𝐿ΛQ*𝑇

¬Q*𝐿ΛQ*𝑇

Q*𝑇

Q*𝐿Λ¬Q*𝑇

Q*𝐿

Q*𝐿 ∨ Q*𝑇

Q*𝐿 ∨ Q*𝑇

Q*𝐿 ∨ Q*𝑇

Q*𝐿 ∨ ¬Q*𝑇

¬Q*𝐿

¬Q*𝐿 ∨ Q*𝑇

¬Q*𝑇

Q*𝐿 ∨ ¬Q*𝑇

¬Q*𝐿 ∨ ¬Q*𝑇

Q*𝑆𝑈𝑃

0 1 2 3

3 2

1 0

(a) Boolean table of base and
composed EVFs.

1 1 1 1

𝑸∗
𝑺𝑼𝑷

0 1 0 0

𝑸∗
𝑳Λ¬𝑸

∗
𝑻

1 0 0 0

𝑸∗
𝑳 ∨ 𝑸

∗
𝑻

0 0 0 0

𝑸∗
𝑰𝑵𝑭

0 0 0 1

𝑸∗
𝑳Λ𝑸

∗
𝑻

0 0 1 0

¬𝑸∗
𝑳Λ𝑸

∗
𝑻

1 1 0 0

¬𝑸∗
𝑻

0 1 0 1

𝑸∗
𝑳

1 1 1 0

¬𝑸∗
𝑳 ∨ ¬𝑸

∗
𝑻

1 0 0 1

𝑸∗
𝑳 ∨ ¬𝑸

∗
𝑻

1 0 1 0

¬𝑸∗
𝑳

0 0 1 1

𝑸∗
𝑻

0 1 1 0
𝑸∗

𝑳 ∨ 𝑸
∗
𝑻

1 0 1 1

¬𝑸∗
𝑳 ∨ 𝑸

∗
𝑻

0 1 1 1

𝑸∗
𝑳 ∨ 𝑸

∗
𝑻

1 1 0 1

𝑸∗
𝑳 ∨ ¬𝑸

∗
𝑻

(b) Hasse diagram of the Boolean EVF algebra.

Figure 5.10: Boolean table and Hasse diagramm for EVFs of deterministic shortest path
tasks in the the four-rooms domain. (a) shows a well order on G that labels the goals, the
induced base EVFs from labeling the goals, the logical expressions for all 16 compositions
of the base EVFs, their Boolean values and value functions per goal. (b) illustrates the
Boolean EVF algebra showing the EVFs for all 16 tasks inM, together with the Boolean
values and logical expressions that generates them from the base EVFs.

54 Chapter 5. Composing Extended Value Functions

Well Order
on 4 goal states

Q ∗𝐿

Q ∗𝑇

Q ∗𝐼𝑁𝐹

Q ∗𝐿ΛQ ∗𝑇

¬Q ∗𝐿 ΛQ ∗𝑇

Q ∗𝑇

Q ∗𝐿 Λ¬Q ∗𝑇

Q ∗𝐿

Q ∗𝐿∨ Q ∗𝑇

Q ∗𝐿∨ Q ∗𝑇

Q ∗𝐿∨ Q ∗𝑇

Q ∗𝐿∨ ¬Q ∗𝑇

¬Q ∗𝐿

¬Q ∗𝐿∨ Q ∗𝑇

¬Q ∗𝑇

Q ∗𝐿∨ ¬Q ∗𝑇

¬Q ∗𝐿∨ ¬Q ∗𝑇

Q ∗𝑆𝑈𝑃

0 1 2 3

3 2

1 0

(a) Boolean table of base and
composed EVFs.

1 1 1 1

𝑸∗
𝑺𝑼𝑷

0 1 0 0

𝑸∗
𝑳Λ¬𝑸

∗
𝑻

1 0 0 0

𝑸∗
𝑳 ∨ 𝑸

∗
𝑻

0 0 0 0

𝑸∗
𝑰𝑵𝑭

0 0 0 1

𝑸∗
𝑳Λ𝑸

∗
𝑻

0 0 1 0

¬𝑸∗
𝑳Λ𝑸

∗
𝑻

1 1 0 0

¬𝑸∗
𝑻

0 1 0 1

𝑸∗
𝑳

1 1 1 0

¬𝑸∗
𝑳 ∨ ¬𝑸

∗
𝑻

1 0 0 1

𝑸∗
𝑳 ∨ ¬𝑸

∗
𝑻

1 0 1 0

¬𝑸∗
𝑳

0 0 1 1

𝑸∗
𝑻

0 1 1 0
𝑸∗

𝑳 ∨ 𝑸
∗
𝑻

1 0 1 1

¬𝑸∗
𝑳 ∨ 𝑸

∗
𝑻

0 1 1 1

𝑸∗
𝑳 ∨ 𝑸

∗
𝑻

1 1 0 1

𝑸∗
𝑳 ∨ ¬𝑸

∗
𝑻

(b) Hasse diagram of the Boolean EVF algebra.

Figure 5.11: Boolean table and Hasse diagram for EVFs of discounted goal-reaching tasks
in the four-rooms domain. (a) shows a well order on G that labels the goals, the induced
base EVFs from labeling the goals, the logical expressions for all 16 compositions of the
base EVFs, their Boolean values and value functions per goal. (b) illustrates the Boolean
EVF algebra showing the EVFs for all 16 tasks in M, together with the Boolean values
and logical expressions that generates them from the base EVFs.

5.4. Zero-Shot Composition With Function Approximation 55

5.4 Zero-Shot Composition With Function Approxi-

mation

Finally, we demonstrate that our compositional approach can also be used to tackle high-
dimensional domains where function approximation is required. We use the same video
game environment as in Section 4.4, where the observations are images of the 2D game
world and the agent must navigate to collect objects of different shapes and colours. We
show zero-shot composition when the tasks are specified as deterministic shortest paths
and discounted goal reaching.

5.4.1 Deterministic Shortest Path Tasks

Similarly to Section 4.4, for each task the agent receives a reward of 2 when it collects
desired objects and −0.1 everywhere else. We first learn to solve two base tasks: collecting
blue objects, and collecting squares, which can then be composed to solve new tasks
immediately. Figure 5.12 shows the learned extended value functions, their value functions
obtained by maximizing over goals, and sample trajectories.

(a) Extended value functions
for collecting blue objects.

(b) Value functions for col-
lecting blue objects.

(c) Trajectories for collecting
blue objects.

(d) Extended value function
for collecting squares.

(e) Value function for collect-
ing squares.

(f) Trajectories for collecting
squares.

Figure 5.12: Base tasks for the video game environment in the deterministic shortest path
setting. We show extended value functions learned for the blue, and square tasks.

We demonstrate composition characterised by (i) disjunction, (ii) conjunction and (iii)
exclusive-or. This corresponds to tasks where the target items are: (i) blue or square,
(ii) blue squares, and (iii) blue or squares, but not blue squares. Figure 5.13 illustrates
extended value functions, as well as value functions obtained by maximizing over goals and
sample trajectories for the respective tasks. Notice how even with function approximation
composition of EVFs still produces EVFs. That is the composed EVFs not only lead to
optimal value functions and trajectories, but they still retain the properties of EVFs like

56 Chapter 5. Composing Extended Value Functions

optimal values for each goal. This is why in general, EVFs allow for as many compositions
as desired.

(a) Extended value function
for disjunctive composition.

(b) Value function for dis-
junctive composition.

(c) Trajectory for disjunctive
composition.

(d) Extended value function
for conjunctive composition.

(e) Value function for con-
junctive composition.

(f) Trajectories for conjunc-
tive composition.

(g) Extended value function
for exclusive-or composition.

(h) Value function for
exclusive-or composition.

(i) Trajectories for exclusive-
or composition.

Figure 5.13: By composing extended value functions from the base deterministic shortest
path tasks (collecting blue objects, and collecting squares), we can act optimally in new
tasks with no further learning. The extended value functions shows the value function
with respect to each goal plotted on the same axis. To generate this, we place the agent
at every location and apply the element wise composition operators on the outputs of
each network. We then compute the maximum over all actions for each goal. The points
are interpolate between each other to smooth the graph. Any error in the visualisation is
due to the use of non-linear function approximation.

5.4. Zero-Shot Composition With Function Approximation 57

5.4.2 Discounted goal-reaching tasks

Similarly to Section 4.4, for each discounted goal reaching task the agent receives a reward
of 2 when it collects desired objects and 0 everywhere else. The discount factor used is
also γ = 0.9. We first learn to solve two base tasks: collecting blue objects, and collecting
squares, which can then be composed to solve new tasks immediately. Figure 5.12 shows
the learned extended value functions, their value functions obtained by maximizing over
goals, and sample trajectories.

We demonstrate the compositions characterised by (i) disjunction, (ii) conjunction
and (iii) exclusive-or. Figure 5.13 illustrates extended value functions, as well as value
functions obtained by maximizing over goals and sample trajectories for the respective
tasks. We again observe how even with function approximation composition of EVFs still
produces EVFs. However unlike deterministic shortest path tasks we note how the EVFs
here only learn to collect desired objects. This suggests that even in the case of different
terminal states, that is when termination only occurs when collecting desired objects, the
EVF of discounted goal-reaching tasks should remain the same.

(a) Extended value function
for collecting blue objects.

(b) Value function for col-
lecting blue objects.

(c) Trajectories for collecting
blue objects.

(d) Extended value function
for collecting squares.

(e) Value function for collect-
ing squares.

(f) Trajectories for collecting
squares.

Figure 5.14: Base tasks for the video game environment in the discounted goal reaching
setting. We show extended value functions learned for the blue, and square tasks.

58 Chapter 5. Composing Extended Value Functions

(a) Extended value function
for disjunctive composition.

(b) Value function for dis-
junctive composition.

(c) Trajectory for disjunctive
composition.

(d) Extended value function
for conjunctive composition.

(e) Value function for con-
junctive composition.

(f) Trajectories for conjunc-
tive composition.

(g) Extended value function
for exclusive-or composition.

(h) Value function for
exclusive-or composition.

(i) Trajectories for exclusive-
or composition.

Figure 5.15: By composing extended value functions from the base discounted goal-
reaching tasks (collecting blue objects, and collecting squares), we can act optimally
in new tasks with no further learning. The extended value functions shows the value
function with respect to each goal plotted on the same axis. To generate this, we place
the agent at every location and apply the element wise composition operators on the
outputs of each network. We then compute the maximum over all actions for each goal.
The points are interpolate between each other to smooth the graph. Any error in the
visualisation is due to the use of non-linear function approximation.

5.5. Investigating Practical Considerations 59

5.5 Investigating Practical Considerations

The theoretical results presented in this work rely on Assumptions 3.3.1 and 3.4.2, which
restrict the tasks’ transition dynamics and reward functions in potentially problematic
ways. Although this is necessary to prove that algebraic composition results in optimal
value functions, in this section we investigate whether these can be practically ignored.
In particular, we investigate two restrictions: the requirement that tasks share the same
terminal states, and the impact of using dense rewards on non-terminal states.

5.5.1 Four Rooms Experiments

We use the same setup as the experiment outlined in Section 3.5, but modify it in two
ways. We first investigate the difference between using sparse and dense rewards. Our
sparse reward function is defined as

rsparse(s, a, s
′) =

{
2 if s′ ∈ G
−0.1 otherwise,

and we use a dense reward function similar to Peng et al. (2019):

rdense(s, a, s
′) =

0.1

|G|
∑
g∈G

exp(
|s′ − g|2

4
) + rsparse(s, a, s

′).

Using this dense reward function, we again learn to solve the two base task MT (reach-
ing the centre of the top two rooms) and ML (reaching the centre of the left two rooms).
We then compose them to solve a variety of tasks, with the resulting value functions
illustrated by Figure 5.16.

(a) Q̄∗L (b) Q̄∗T (c) Q̄∗L ∨ Q̄∗T (d) Q̄∗L ∧ Q̄∗T (e) ¬Q̄∗L (f) Q̄∗L Y Q̄∗T

Figure 5.16: An example of Boolean algebraic composition using the learned extended
value functions with dense rewards. Top row shows extended value functions while bot-
tom one shows resulting value functions and policies obtained by maximizing over goals.
Arrows represent the optimal action in a given state. (a–b) The learned optimal extended
value functions and resulting value functions for the base tasks with dense rewards. (c)
Disjunctive composition. (d) Conjunctive composition. (e) Negation. (f) Combining op-
erators to model exclusive-or composition. We note that the resulting value functions are
very similar to those produced in the sparse reward setting.

We also modify the domain so that tasks need not share the same terminating states
(that is, if the agent enters a terminating state for a different task, the episode does not

60 Chapter 5. Composing Extended Value Functions

terminate and the agent can continue as if it were a normal state). This results in four
versions of the experiment:

(i) sparse reward, same absorbing set

(ii) sparse reward, different absorbing set

(iii) dense reward, same absorbing set

(iv) dense reward, different absorbing set

We learn extended value functions for each of the above setups, and then compose
them to solve each of the 24 tasks representable in the Boolean algebra. We measure each
composed value functions by evaluating its policy in the sparse reward setting, averaging
results over 100000 episodes. The results are given by Figure 5.17.

Q*
MT

Q*
ML

Q*
MT

¬Q*
ML

Q*
ML

¬Q*
MT

Q*
MT

Q*
ML

Q*
MT

¬Q*
MT

Q*
ML

¬Q*
ML

Q*
MT

Q*
ML

Q*
MT

¬Q*
ML

Q*
ML

¬Q*
MT

Q*
MT

Q*
ML

¬(Q*
MT

Q*
ML

) Q*
MT

Q*
ML

Tasks
0.5

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e

Re
tu

rn
s

Domain
Sparse rewards, same absorbing set
Dense rewards, same absorbing set
Sparse rewards, different absorbing set
Dense rewards, different absorbing set

Figure 5.17: Box plots indicating returns for each of the compositional tasks, and for
each of the four variations of the domain. Results are collected over 100000 episodes with
random start positions.

Our results indicate that extended value functions learned in the theoretically optimal
manner (sparse reward, same absorbing set) are indeed optimal. However, for the
majority of the tasks, relaxing the restrictions on terminal states and reward functions
results in policies that are either identical or very close to optimal. Finally, we show
that while EVFs are more expensive to learn than regular value functions, the trade-off
with the compositional explosion of skills is worth it. We demonstrate this in a modified
four-rooms domain with 40 goals, where we need to learn only 7 base tasks, as opposed
to 40 for the disjunctive case. Figure 5.18 shows results in comparison to the disjunctive
composition of Van Niekerk et al. (2019).

5.5.2 Function Approximation Experiments

In this section we investigate whether we can again loosen some of the restrictive as-
sumptions when tackling high-dimensional environments. In particular, we run the same
experiments as those presented in Section 5.4, but modify the domain so that (i) tasks
need not share the same absorbing set, (ii) the pickup-up action is removed (the agent
immediately collects an object when reaching it), and (iii) the position of every object is
randomised at the start of each episode.

5.6. Conclusion 61

0 10 20 30 40 50
Number of tasks

0.00

0.25

0.50

0.75

1.00

1.25

C
um

ul
at

iv
e

ti
m

es
te

ps
to

co
nv

er
ge

×106

Boolean task algebra

Disjunction only

Figure 5.18: Cumulative number of samples required to solve tasks in a 40-goal Four
Rooms domain. Error bars represent standard deviations over 100 runs.

We first learn to solve the three base tasks: collecting blue objects, collecting purple
objects, and collecting squares. Their resulting trajectories, value functions and extended
value functions are illustrated by Figure 5.19. Notice how even with the relaxed assump-
tions the EVFs still successfully decouples the values with respect to the desired goals for
each task. In fact these EVFs are now similar to that of discounted goal-reaching tasks
in that the agent does not learn how to achieve undesired goals, since they are no longer
terminating. Note that because the pickup action is removed, the environment terminates
upon touching an object and the agent can no longer reach any other object. This results
in the large dips in values observed in the shown EVFs.

We then demonstrate that zero-shot compositions do indeed still hold by showing
compositions characterised by disjunction, conjunction and exclusive-or, with the resulting
trajectories, value functions and extended value functions illustrated by Figure 5.20.

In summary, we have shown that our compositional approach offers strong empirical
performance, even when the theoretical assumptions are violated. Finally, we expect that,
in general, the errors due to these violations will be far outweighed by the errors due to
non-linear function approximation.

5.6 Conclusion

In this chapter we formally showed how EVFs can be composed to solve logical speci-
fications of tasks without extra learning. We demonstrated this zero-shot composition
in both gridworld and video game domains. This showed that our composition method
does in fact work even in high-dimensional environments whose tasks require function
approximation to learn. We demonstrated that in practice our assumptions required for
theoretical guarantees can be relaxed while still achieving zero-shot composition. This
further solidifies the potential usefulness of this framework towards the goal of having
agents in real life that exhibit the much desired compositional explosion of skills.

62 Chapter 5. Composing Extended Value Functions

(a) Extended value function
for collecting purple objects

(b) Value function for col-
lecting purple objects

(c) Trajectories for collecting
purple objects

(d) Extended value function
for collecting blue objects

(e) Value function for collect-
ing blue objects

(f) Trajectories for collecting
blue objects

(g) Extended value function
for collecting squares

(h) Value function for col-
lecting squares

(i) Trajectories for collecting
squares

Figure 5.19: Base tasks for the video game environment with relaxed assumptions. We
show extended value functions learned for the purple, blue, and square tasks.

5.6. Conclusion 63

(a) Extended value function
for disjunctive composition.

(b) Value function for dis-
junctive composition.

(c) Trajectories for disjunc-
tive composition (collect
blue or purple objects).

(d) Extended value function
for conjunctive composition.

(e) Value function for con-
junctive composition.

(f) Trajectories for con-
junctive composition (collect
blue squares).

(g) Extended value function
for exclusive-or composition.

(h) Value function for
exclusive-or composition.

(i) Trajectories for exclusive-
or composition (collect blue
or square objects, but not
blue squares).

Figure 5.20: Results for the video game environment with relaxed assumptions. We
generate extended value functions to solve the disjunction of blue and purple tasks, and the
conjunction and exclusive-or of blue and square tasks. The extended value functions shows
the value function with respect to each goal plotted on the same axis. To generate this,
we place the agent at every location and apply the element wise composition operators
on the outputs of each network. We then compute the maximum over all actions for each
goal. The points are interpolate between each other to smooth the graph. Any error in
the visualisation is due to the use of non-linear function approximation with the relaxed
assumptions.

Chapter 6

Future Work and Conclusion

6.1 Future Work

There is much room for improvement in learning the extended value functions. In our
experiments, we learned each extended value function from scratch, but it is likely that
having learned one for the first task, we could use it to initialise the extended value
function for the second task to improve convergence times. One area for improvement lies
in efficiently learning the extended value functions, as well as developing better algorithms
for solving tasks with sparse rewards. For example, it is likely that approaches such
as hindsight experience replay (Andrychowicz et al., 2017) could reduce the number of
samples required to learn extended value functions, while Mirowski et al. (2017) provides
a method for learning complex tasks with sparse rewards using auxiliary tasks. We leave
incorporating these approaches to future work.

Additionally, our experiments only considered simple domains as we placed more fo-
cus on the theoretical foundations. Future work could explore more complex domains
involving difficult problems like robotic control, where learning is difficult and so minimal
amount of learning is desired. While the theoretical results presented here easily extends
to infinite MDPs with continuous state and action spaces, it is necessary to see if that
holds in practice. This would potentially require more capable learning methods and
function approximators for EVFs. They could perhaps take advantage of the rich knowl-
edge (goal oriented values) that are encoded by EVFs. This is another exciting avenue
for future work, especially given how EVFs are similar to population based methods that
learn a diversity solutions for each task.

Regarding compositionality, we only considered concurrent composition. One exciting
avenue for future work could be to extend the logical compositions presented here to
temporal compositions. This could potentially be done by also following an algebraic
approach, formalising temporal logics by using linear temporal logic operators on the
established task space. Another method could simply be to combine the composition
shown here with existing temporal composition methods like hierarchical reinforcement
learning or options. It would give us the ability to solve zero-shot tasks like collect blue
squares then circles but never beige ones. This is a much desired property for lifelong
learning agents.

Another natural avenue for future work is to extend the composition framework be-
yond the classes of MDPs considered. These could be MDPs with different internal
rewards, different terminal states, different environments (different state space, action
space, transition dynamics), non-deterministic transition dynamics, partially observable

64

6.2. Conclusion 65

MDPs (POMDPs), and much more. POMDPs are a particularly interesting one since real
world agents do not get to observe the entire state space. Extending zero-shot composition
to them would hence make the compositions presented in this work much more applicable
practically. Theoretical guarantees on such extensions would be ideal, but future work
could also investigate practical methods of attaining the desired zero-shot composition.

Finally, beyond zero-shot learning and base tasks, we briefly discussed how regardless
of the size of a task space the isomorphism results in Section 5.3 gives us theoretically the
solution to any task by just learning the bounds of the value function space. Future work
could look at efficient practical methods for computing that isomorphism given the set of
desirable goals. Such methods are necessary in the case of infinite or even uncountable goal
spaces, where generating EVFs using Boolean tables becomes impossible. One possible
line of work could be to investigate using the isomorphism as a supervisor to train an
agent using supervised learning on the true EVF rather than reinforcement learning on
the MDP of the task. Any one of these extensions would help get us closer to the ultimate
goal of lifelong learning agents in practice.

6.2 Conclusion

We have formalised the logical composition of tasks and value functions using lattice
algebras, which are the algebraic structures of logics. This enables tasks to be treated
algebraically in a similar way to sets in set theory, propositions in propositional logics, and
digital signals in digital electronics. We then introduced extended value functions, which
is a new type of value function for goal oriented tasks that encodes more information
about solved tasks than standard value functions. We showed how an agent can learn a
diversity of solutions for each task using it. This rich knowledge was shown to be sufficient
to immediately solve composite tasks. This was done by first learning the extended value
functions, and then composing them similarly to the composed task. This zero-shot
ability combined with the notion of base tasks obtained from the task algebra guaranteed
a super-exponential explosion of skills.

Our proposed approach is hence a step towards both interpretable RL—since both the
tasks and optimal value functions can be specified using logic operators—and the ultimate
goal of lifelong learning agents, which are able to solve combinatorially many tasks in a
sample-efficient manner.

References

Abel, D., Jinnai, Y., Guo, S.Y., Konidaris, G., & Littman, M. 2018. Policy and Value
Transfer in Lifelong Reinforcement Learning. Pages 20–29 of: Proceedings of the 35th
International Conference on Machine Learning. Proceedings of Machine Learning Re-
search, vol. 80. PMLR.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew,
B., Tobin, J., Abbeel, P., & Zaremba, W. 2017. Hindsight experience replay. Pages
5048–5058 of: Advances in Neural Information Processing Systems.

Barreto, A., Dabney, W., Munos, R., Hunt, J., Schaul, T., van Hasselt, H., & Silver, D.
2017. Successor features for transfer in reinforcement learning. Pages 4055–4065 of:
Advances in neural information processing systems.

Bellman, R. 1954. The theory of dynamic programming. Technical report. Rand corp
santa monica ca.

Bertsekas, D.P., & Tsitsiklis, J.N. 1991. An analysis of stochastic shortest path problems.
Mathematics of Operations Research, 16(3), 580–595.

Birkhoff, G. 1940. Lattice theory. Vol. 25. American Mathematical Soc.

Boole, G. 1854. An investigation of the laws of thought: on which are founded the math-
ematical theories of logic and probabilities. Dover Publications.

Comtet, L. 2012. Advanced Combinatorics: The art of finite and infinite expansions.
Springer Science & Business Media.

Foster, D., & Dayan, P. 2002. Structure in the space of value functions. Machine Learning,
49(2-3), 325–346.

Fox, R., Pakman, A., & Tishby, N. 2016. Taming the noise in reinforcement learning via
soft updates. In: 32nd Conference on Uncertainty in Artificial Intelligence.

Fu, M. C. 2016. AlphaGo and Monte Carlo tree search: the simulation optimization
perspective. Pages 659–670 of: Proceedings of the 2016 Winter Simulation Conference.
IEEE Press.

Grätzer, G. 2002. General lattice theory. Springer Science & Business Media.

Grätzer, G. 2011. Lattice theory: foundation. Springer Science & Business Media.

Haarnoja, T., Pong, V., Zhou, A., Dalal, M., Abbeel, P., & Levine, S. 2018. Com-
posable Deep Reinforcement Learning for Robotic Manipulation. arXiv preprint
arXiv:1803.06773.

66

References 67

Hunt, J., Barreto, A., Lillicrap, T., & Heess, N. 2019. Composing Entropic Policies using
Divergence Correction. Pages 2911–2920 of: Proceedings of the 36th International
Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97.
PMLR.

Jaksch, T., Ortner, R., & Auer, P. 2010. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr), 1563–1600.

James, H.W., & Collins, E.J. 2006. An analysis of transient Markov decision processes.
Journal of applied probability, 43(3), 603–621.

Kaelbling, Leslie Pack. 1993. Learning to achieve goals. Pages 1094–1099 of: International
Joint Conferences on Artificial Intelligence.

Klir, G., & Yuan, B. 1995. Fuzzy sets and fuzzy logic. Vol. 4. Prentice hall New Jersey.

Levine, S., Finn, C., Darrell, T., & Abbeel, P. 2016. End-to-end training of deep visuo-
motor policies. The Journal of Machine Learning Research, 17(1), 1334–1373.

Lillicrap, T.., Hunt, J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wier-
stra, D. 2016. Continuous control with deep reinforcement learning. In: International
Conference on Learning Representations.

Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A., Banino, A., Denil, M.,
Goroshin, R., Sifre, L., Kavukcuoglu, K., et al. 2017. Learning to navigate in complex
environments. In: International Conference on Learning Representations.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., &
Riedmiller, M. 2013. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A., Veness, J., Bellemare, M., Graves, A.,
Riedmiller, M., Fidjeland, A., Ostrovski, G., et al. 2015. Human-level control through
deep reinforcement learning. Nature, 518(7540), 529.

Monteiro, A. 1974. Matrices de Morgan Caracteristiques Pour le Calcul Propositionnel
Classique.

Moore, A., Baird, L., & Kaelbling, L. 1999. Multi-value-functions: E cient automatic
action hierarchies for multiple goal MDPs. Pages 1316–1323 of: Proceedings of the
international joint conference on artificial intelligence.

Peng, X., Chang, M., Zhang, G., Abbeel, P., & Levine, S. 2019. MCP: Learning Compos-
able Hierarchical Control with Multiplicative Compositional Policies. arXiv preprint
arXiv:1905.09808.

Peng, X. B., Andrychowicz, M., Zaremba, W., & Abbeel, P. 2018. Sim-to-real transfer of
robotic control with dynamics randomization. Pages 1–8 of: 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE.

Puterman, M.L. 2014. Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons.

68 References

Saxe, A.M., Earle, A.C., & Rosman, B.S. 2017. Hierarchy Through Composition with
Multitask LMDPs. Proceedings of the 34th International Conference on Machine Learn-
ing, 70, 3017–3026.

Schaul, T., Horgan, D., Gregor, K., & Silver, D. 2015. Universal Value Function Approx-
imators. Pages 1312–1320 of: Proceedings of the 32nd International Conference on
Machine Learning. Proceedings of Machine Learning Research, vol. 37. Lille, France:
PMLR.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert,
T., Baker, L., Lai, M., Bolton, A., et al. 2017. Mastering the game of go without human
knowledge. Nature, 550(7676), 354.

Sutton, R., Precup, D., & Singh, S. 1999. Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2),
181–211.

Sutton, R., Modayil, J., Delp, M., Degris, T., Pilarski, P., White, A., & Precup, D. 2011.
Horde: A scalable real-time architecture for learning knowledge from unsupervised
sensorimotor interaction. Pages 761–768 of: The 10th International Conference on
Autonomous Agents and Multiagent Systems-Volume 2. International Foundation for
Autonomous Agents and Multiagent Systems.

Sutton, Richard S, Barto, Andrew G, et al. 1998. Introduction to reinforcement learning.
Vol. 135. MIT press Cambridge.

Thrun, S. 1996. Is learning the n-th thing any easier than learning the first? Pages
640–646 of: Advances in neural information processing systems.

Todorov, E. 2007. Linearly-solvable Markov decision problems. Pages 1369–1376 of:
Advances in Neural Information Processing Systems.

Todorov, E. 2009. Compositionality of optimal control laws. Pages 1856–1864 of: Ad-
vances in Neural Information Processing Systems.

Van Niekerk, B., James, S., Earle, A., & Rosman, B. 2019. Composing Value Functions
in Reinforcement Learning. Pages 6401–6409 of: Proceedings of the 36th International
Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97.
PMLR.

Veeriah, V., Oh, J., & Singh, S. 2018. Many-goals reinforcement learning. arXiv preprint
arXiv:1806.09605.

Watkins, C. 1989. Learning from delayed rewards. Ph.D. thesis, King’s College, Cam-
bridge.

White, R. 1959. Motivation reconsidered: The concept of competence. Psychological
review, 66(5), 297.

Yen, J., & Langari, R. 1999. Fuzzy logic: intelligence, control, and information. Vol. 1.
Prentice Hall Upper Saddle River, NJ.

	Introduction
	Overview
	Research Problem
	Main Contributions
	Thesis Structure

	Preliminaries
	Introduction
	Reinforcement Learning
	Markov Decision Processes
	Policies and value functions

	Lattice Theory
	Partial-order
	Semi-Lattice Algebra
	Lattice Algebra
	De Morgan Algebra
	Boolean Algebra

	Conclusion

	Composing Tasks
	Introduction
	Related Work
	Tasks
	Algebra of Tasks
	Task Lattice
	De Morgan Task Algebra
	Boolean Task Algebra

	Between Task and Power Set Boolean Algebras
	Problem with Standard Value Functions for Zero-Shot Composition
	Conclusion

	Extended Value Functions
	Introduction
	Theory for Extended Value Functions
	Related Work
	EVFs for Deterministic Shortest Path Tasks
	EVFs for Discounted Goal Reaching Tasks

	Learning EVFs
	Tabular Case
	Function Approximation Case

	Experiments
	Tabular Case
	Function Approximation Case

	Conclusion

	Composing Extended Value Functions
	Introduction
	Algebra of EVFs
	EVF Lattice
	De Morgan EVF Algebra
	Boolean EVF Algebra

	Between EVF and Power Set Boolean Algebras
	Zero-Shot Composition With Function Approximation
	Deterministic Shortest Path Tasks
	Discounted goal-reaching tasks

	Investigating Practical Considerations
	Four Rooms Experiments
	Function Approximation Experiments

	Conclusion

	Future Work and Conclusion
	Future Work
	Conclusion

