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Abstract

Neural Networks is one of the most vastly used AI (machine learning) techniques.
Unfortunately it relies greatly on high processing power to achieve great results
within reasonable time frame. This paper proposes a novel parallel algorithm,
Hypersearch, that optimizes their performance by taking advantage of both worlds
of hyperparameter optimization and parallel programming. Our results show that
Hypersearch not only performs well, but is also competitive against state-of-the-
art Hyperparameter optimization alternatives. More specifically we show that it
performs better than Hyperopt-TPE (Tree-structured Parzen Estimator).

1 Introduction

Hyperparameter Optimization refers to any procedure which finds hyperparameters that maximizes
performance (Bergstra et al., 2011). This is usually done manually (hand tuning) by someone actually
trying different hyperparameter choices and using the performance due to each to guess the next
better choice to try. The obvious problem with this is that it takes too long (depending on neural
network and data size) and usually requires expert knowledge of neural networks and the problem
domain to make sensible guesses. Hence a lot of research has gone into automatic methods, some
of the state-of-the-art ones being: HyperOpt which uses Bayesian Optimization with TPE (Bergstra
et al., 2013), Spearmint which uses Bayesian Optimization with GP (Eggensperger et al., 2013),
SMAC which uses Bayesian Optimization with a custom modeling function (Thornton et al., 2013),
and Hyperband which uses a Random Search Bandit-Based Aproach (Li et al., 2017).

This work introduces an easily parallelizable algorithm called Hypersearch that attempts to improve
neural networks performance faster than current state-of-the-art hyperparameter optimization meth-
ods, by simultaneously optimizing the parameters and hyperparameters for a given neural network
architecture. We only evaluate a sequential implementation of Hypersearch, leaving the parallel or
distributed implementation for future work.

2 Hypersearch Algorithm

Given a neural network N , a hyperparameter space H , a maximum number of epochs M , a number
of sampled hyperparameters per session S and a number of sessions m, the algorithm works as
follows:

1. Samples S hyperparameters from H .

2. Parallely train N with the S hyperparameters for
⌊
M
m

⌋
epochs (where m ≤M ). Let h be

the hyperparameter of the neural network with best convergence.
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3. Samples S − 1 hyperparameters in the neighbourhood of h.
4. Discards the S−1 under-performing neural networks and replaces them with S−1 new neu-

ral networks initialized with the best neural networks parameters and respectively assigned
the sampled S − 1 hyperparameters.

5. Repeat steps 2 to 4 m− 1 times.
6. Return best neural network(s).

Assuming constant time for choosing best network and selecting next hyperparameters (true if using
least training error and random sampling respectively), the time complexity of Hypersearch is hence
O(S ∗M). This is the same as that of normal hyperparameter optimization where a neural network
is trained S times with different hyperparameters for M epochs.

3 Results

Figure 1a shows the behaviour of the training and validation losses when using Hypersearch to train
neural networks on a given regression problem. Hypersearch achieves extremely low losses quickly
thanks to its simultaneous optimization of parameters and hyperparameters. This demonstrates that
Hypersearch is a useful method in practice for automatically finding the best performing neural
network of a given architecture. Hypersearch and Hyperopt are then compared on a regression
problem by running both methods with the same initial conditions (network architecture, parameters
initialization, hyperparameters space, optimizer, etc). Figure 1b shows the test data predictions of the
best network produced by each method, and is representative of multiple runs of the experiment. We
observe that Hypersearch outperforms Hyperopt.

(a) Performance of neural networks: S = 10, m = 4

(b) Predictions of best neural network on test data

Figure 1: Hypersearch with uniform random sampling (URS) of next hyperparameters and comparison
with Hyperopt-TPE

4 Conclusion

Hypersearch performs better than Hyperopt-TPE, with a secondary advantage being that at the end of
training it has numerous neural networks with similar performance. Hence the popular technique
of averaging the predictions of multiple networks can be applied here possibly providing better
results. It is also worth noting that the goal of Hypersearch is to find the best neural network of a
given architecture, not just the best hyperparameters. Hence its final best hyperparameters may not
always be optimal (their good performance during training is mainly as a result of the best parameters
initialization in each Hypersearch session).

Other future work could include more thorough benchmarking (with other state of the art hyperpa-
rameter optimizers) and an actual parallel or distributed implementation of Hypersearch that takes
full advantage of its high parallelism.
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